
MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-1

APPENDIX F

GOLAY CODING ALGORITHM

F.1.  General.

F.1.1  Scope.  This appendix contains amplifying information in support of MIL-STD-188-220.

F.1.2  Application.  This appendix is not a mandatory part of
MIL-STD-188-220.  The information contained herein is intended for guidance only.

F.2.  Applicable documents.  None.

F.3.  Forward error correction.  The FEC method requires the receiver to detect and
automatically correct errors in a received block of information.Extended Golay (24, 12, 8)
Coding is used to provide this errordetection and correction in this standard.  The number of
errors the receiver can detect and correct depends on the coding method. The information bits (k)
are separated into blocks that contain both information bits and code bits.  The length of the
block, including the information and code bits, is (n).  The code is described as (n,k), where n is
the length of the block and k is the number of information bits in the block.

F.4.  Golay code.  The Golay code is a linear, block, perfect, and cyclic (23,12)  code capable of
correcting any combination of three or fewer errors in a block of 2423 digits.  The generator
polynomial for this code is recast as polynomials higher order first

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

where g(x) is a factor of x23 + 1

F.4.1  Half-rateand Extended Golay code. The half-rate Golay code (24,12, 7) is formed by
adding azero fill bit to the Golay (23, 12) code.Extended Golay is formed by adding an odd
parity bit to the Golay (23,12) code.  The (24,12, 8)The fill bit is not checked on reception. The
(24,12) code is preferable to the (23, 12) because it has a code rate of exactly one-half.  This
code rate simplifies system timing.

F.4.2  Golay code implementation.  The Golay code may be implemented in either hardware or
software. The hardware implementation uses shift-registers for encoding and decoding, as
described in F4.2.1 and F4.2.2,F.4.2.1 and F.4.2.2, respectively.  The software implementation
uses a generator matrix and conversion table, as described in F.4.2.3.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-2

Figure F-2.  Kasami error-trapping decoder for the (24, 12) Golay code .



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-3

F.4.2.1  Hardware implementation.  Golay code encoding can be performed with an 11-stage
feedback shift register with feedback connections selected according to the coefficients of g(x).
A shift register corresponding to the coefficients of g(x) is shown in Figure F-1.  The k
information bits are located at the beginning of the n symbol block code.  With the gate open, the
information bits are loaded into the shift register stages and simultaneously into the output
channel.  At this time the shift register contains the check symbols.  With the gate closed, register
contents are then shifted onto the output channel.  The last n - k symbols are the check symbols
that form the whole codeword.

FigureFIGURE F-1.  Shift register encoding for the (23, 12) Golay code.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-4

F.4.2.2  Hardware decoding.  The Golay code is decoded using a number of techniques such as
the error-trapping process developed by T. Kasami.  The Kasami error-trapping decoder for the
Golay code is shown in Figure F-2.  It works as follows:

1.a. Gates 1, 3, and 5 are opened, and gates 2 and 4 are closed.  The received
codeword r(x) is then shifted into both the 23-stage shift register and the
syndrome register.  At the same time, the previously corrected codeword is shifted
out to the user.  The syndrome

S(x) = S0 + S1x + . . . + S10x
10

is then formed and subjected to threshold tests.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-5

FIGURE F-2.  Kasami error-trapping decoder for the (24, 12) Golay code.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-6

2.b. Gates 1, 4, and 5 are closed and gate 2 is opened.  Gate 3 remains open.  The
threshold tests occur in the following order:

a.1. If Z0 is unity, then all the errors are confined to the 11 high-order positions
of r(x), and S(x) matches the errors.  Z0 opens gate 4 and closes gate 3.
Contents of both the 23-stage shift register and the syndrome shift register
are then shifted 11 times, and the errors are corrected.  Then gate 4 is
closed and the contents of the 23-stage shift register are shifted until the
received codeword is in its original position.  The decoder then goes to
step 3 below.

b.2. If Z1 is unity, the error pattern in S(x) is the same as the errors in the 11
high-order bits of the codeword r(x), and a single error exists at location
x5.  Gate 4 is opened and gate 3 is closed.  The counter is preloaded with a
count of 2, and both the syndrome shift register and the 23-stage shift
register are shifted until the error in x5 is corrected.  Then gate 4 is closed,
and the contents of the 23-stage shift register are shifted until the received
codeword is in its original position.  The decoder then goes to step 3.

c.3. If Z2 is unity, the error pattern in S(x) is the same as the errors in the 11
high-order bits of the codeword r(x), and there is a single error in location
x6.  The same steps are followed as in b (above) except that the counter is
preloaded with a count of 3.  The decoder then goes to step 3.

d.4. If neither of the three thresholds is unity, the decoder goes directly to step
3.

3.c. Gates 1, 4, and 5 are closed, and gates 2 and 3 are opened.  Contents of both the
23-stage shift register and the syndrome shift register are then shifted once to the
right.  The decoder then goes to step 2.

4.4d This action continues until step 3 has been executed 46 times.  Then the decoder
returns to step 1 to process the next received codeword.

The decoder always yields an output.  The output is correct if there were 3 or fewer errors in the
received codeword, and erroneous if there were more than 3 errors in the codeword.

F.4.2.3  Software implementation.  The transmitting DMTD shall generate the check bits using
the following generator polynomial:

g(x)= x11 + x10 + x6 + x5 + x4 + x2 + 1

Note that using modulo 2 addition,

                 23 11 10 6 5 4 2 11 9 7 6 5x +1= ( x + x + x + x + x + x +1)( x + x + x + x + x + x+1)(x+1)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-7

x23+1=(x11+x10+x6+x5+x4+x2+1)(x11+x9+x7+x6+x5+x+1)(x+1)

The 11 check bits shall be as derived from thefollowing generator matrixG:
G, shown in Figure F-3, where the matrix contains the coefficients of the polynomials on the left.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-8

FIGURE F-3.  Generator matrix G.

By interchanging the I and P columns to obtain matrix T, shown in Figure F-4, that is,

G=[P,I] (12 x 23) = >[I,P] (12 x 23) = T



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-9

Thethe transmission order and value of the code word bits can be obtained by matrix
multiplication (modulo 2 addition without carry) as follows:



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F-10

FIGURE F-4.  Matrix T.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-1

APPENDIX G

PACKET CONSTRUCTION AND BIT ORDERING

G.1.  General.

G.1.1  Scope.  This appendix illustrates the construction of packets starting with the Application
Layer Protocol Data Unit (PDU) and VMF Message data buffers and ending with the data link
bit order of transmission and physical layer PDU. However this example excludes the S/R
protocol. The focus of this example is to show correct formatting of the 188-220 subnetwork.

G.1.2  Application.  This appendix is a mandatory part of this document.  The bit ordering
defined herein shall be utilized by all implementers.

G.2.  Applicable Documents.

a. RFC 768: User Datagram Protocol

b. RFC 791: Internet Protocol -- DARPA Internet Program Protocol Specification

c. MIL-STD-2045-47001: Interoperability  Standard for Connectionless Data Transfer --
Application Standard

d. Joint Interoperability of Tactical Command and Control Systems, Variable Message
Format Technical Interface Design Plan (Test Edition), Reissue 2, Volume III

G.3.  PDU Construction.  This section provides examples illustrating the construction and bit
ordering of a VMF message through the Application Layer, the Transport Layer, the Network
Layer, Link Layer and Physical Layer.  For clarity, each layer will be discussed separately and
then combined for actual transmission.  The same representations will be utilized for each layer:

the MSB (2n bit) is represented with an italicized font and

the LSB (20 bit) is shown to the RIGHT in the Value (binary) column.

This representation is carried into the other columns to identify the beginning and end of each of
the fields as the bits are moved into individual octets.  Note that the bit markings for MSB and
LSB are on a field basis, not on an octet basis. Single bit fields are treated as LSB.  In addition,
since some layers (e.g. transport) are based on commercial standards, the representation from the
appropriate RFC will also be included.  In all cases, we will start with a figure which illustrates
the interaction with upper/lower communication layers, followed by a figure showing the
exchange between communication layers.  There will be a table showing the construction of the
PDU.  This will be followed by a table showing the construction of each octet and a figure
showing the serial representation of this particular PDU as it would appear at physical layer.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-2

Each layer typically adds value and its own header to an outgoing message.  This process is
illustrated in Figure G-1.

FIGURE G-1.  PDU construction.

An application header is added to the VMF message at application layer.  For this protocol,
layers 5 and 6 are null layers, and no processing or headers are present.  The Application Layer
handles these functions.  The transport layer adds its header.  Although the standard calls out
TCP, UDP and segmentation/reassembly, only UDP is illustrated in this appendix.  Next, the
network layer adds the IP header and the Intranet header.  The message is now passed to the data
link layer which adds both a header and a trailer.  Finally, the physical layer adds its header
resulting in the final PDU for transmission.  Note that this example does not include TCP,
segmentation & reassembly, or COMSEC.

G.3.1  VMF Message Data Exchange. The relationship of the VMF Messaging Services to other
communication layers is shown in Figure G-2.

A layered communication model is used in this example for consistency with the principles of
the ISO OSI reference model.  The model discussed here is tailored to focus attention
specifically on VMF Messaging Services, and the data it produces.  A user of VMF Messaging
Services exchanges Message Content with its peer at another node by sending and receiving the
Message Content via the VMF Messaging Services. VMF Messaging Services sends and
receives the Message Content by converting the Message Content to Message Data and
exchanging the Message Data with its peer at another node.  The VMF Message Data is sent and
received via lower communication layers. The lower communication layers send and receive the
VMF Message Data transparently over a variety of communications media.  Note that VMF
Messaging Services would ordinarily use Application Layer services from the lower



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-3

communication layers to send and receive Message Data.  The Message Data would then appear
in the Application Layer PDU’s VMF message.

FIGURE G-2.  VMF message services interaction with other communication layers.

The format of the Message Data is defined in terms of the actual data buffer or data stream used
to exchange the Message Data between the VMF Messaging Services and the lower
communication layers.  The rationale for using the Message Data’s data buffer/stream to define
the format is: 1) for consistency with industry standard commercial communications hardware
and software (e.g., UNIX implementations of TCP/IP), which exchange data with other software
when sending or receiving as a buffer or stream of octets; 2) to provide a definition independent
of the specifics of any other communication layer, consistent with the OSI ISO model principle
of making communication layers independent; and 3) to avoid differences in the bit
representations used to implement communications on different media.  For example, on
Ethernet LAN media each octet is sent least significant bit first, but on FDDI media each octet is
sent most significant bit first.  To achieve a universal definition of the Message Data format, its
representation is defined independent of the other communication layers.  The relationship of the
Message Data’s data buffer/stream to the VMF Messaging Services is depicted in Figure G-3.
The Message Data is defined as a buffer or stream of octets.  The rational for treating the
Message Data as a series of octets is for consistency with the way communications data is
handled by industry standard commercial communications hardware and software and for
independence from platform-dependent byte ordering issues.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-4

FIGURE G-3.  Exchange of message data between communication layers.

G.3.1.1  Example of VMF Message Data Construction.  The construction of VMF Message Data
is illustrated by the example in Table G-1. The first four columns of the table provide a descrip-
tion of each field in the example, the field length in bits, and the value of the field in both
decimal and binary representations. The last three columns show the physical encoding of the
VMF Message Data. In the fifth column, Field Fragments, the bits of each field are placed in
octets. The bit(s) of each field are positioned in an octet such that the LSB of the field is
positioned in the least significant unencoded bit of the octet, the next LSB of the field is placed
in the next least significant unencoded bit of the octet, and repeated until all of the bits of the
field have been encoded. When an octet is filled before all the bits of a field are encoded, the
process is continued encoding the next octet with the remaining bits of the field. This field/octet
encoding procedure is performed starting with the first field and octet, and repeated for each
successive field and individual octet, in order, until the encoding is completed. When a field has
groups, the field encoding procedure is performed starting with the first group, and repeated for
each successive group and individual octet, in order, until the encoding of the field is completed.
The Target Number field illustrates the encoding of a field with groups. Note the LSB of a field
or octet is defined as the bit having the weight of 20 when the field or octet is represented as a
numeric value. X’s are used to identify bits that are not associated with the field being encoded.
The sixth column, Octet Value - Binary, assembles the bits contributed by successive fields into
complete octets, represented in binary.  The seventh column, Octet Value – Hexadecimal,
represents the octet value in hexadecimal. The last column, Octet Number, numbers the octets
from first to last starting with 0.

When all fields have been encoded, any remaining unencoded bits in the last octet are filled with
zeroes (zero padded).  Each VMF Message is individually encoded and zero padded.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-5

TABLE G-1. Example of VMF Message Data Construction.

Field Name Length
(bits)

Value
(Dec)

Value
(Bin)

Field
Fragments

Octet
Value
(Bin)

Octet
Value
(hex)

Octet
Number

MSB
2n

LSB
20 27 20 27 20

Check Fire Type 3 0 000 xxxxx000

Check Fire/Cancel Check fire
command

3 1 001 xx001xxx

FPI 1 1 1 x1xxxxxx

Target Number (Group 1) 7 65 (A) 1000001 1xxxxxxx
xx100000

11001000 C8 0

                           (Group 2) 7 66 (B) 1000010 10xxxxxx
xxx10000

10100000 A0 1

                           (Group 3) 14 1543 00011000000111 111xxxxx
11000000
xxxxx000

11110000
11000000

F0
C0

2
3

FPI (Observer URN) 1 0 0 xxxx0xxx
FPI (First Unit URN) 1 0 0 xxx0xxxx
GPI DTG 1 0 0 xx0xxxxx
FPI  (launcher message) 1 0 0 x0xxxxxx
(Zero Padding) 1 0 0 0xxxxxxx 00000000 00 4



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-6

Figure G-4 illustrates the octets arranged in a serial format as they would appear at the physical
layer, with LSB first.

Octet 0 Octet 1 Octet 2 Octet 3 Octet 4

20 27 20 27 20 27 20 27 20 27

00010011 00000101 00001111 00000011 00000000

FIGURE G-4.  Serial representation of PDU.

G.3.2  Application Layer Data Exchange.  The relationship of the Application Layer to other
communication layers is shown in Figure G-5.  A layered communication model is used in this
example for consistency with the principles of the ISO OSI reference model.  The model
discussed here is tailored to focus attention specifically on the Application Layer, and the data it
produces.  A user of the Application Layer exchanges a VMF message with its peer at another
node by sending and receiving the VMF message via the Application Layer.  The Application
Layer sends and receives the VMF message transparently by producing and exchanging an
Application Layer Protocol Data Unit (PDU) with its peer at another node.  The Application
Layer PDU consists of the Application Header concatenated with the VMF message, and is sent
and received via lower communication layers. The lower communication layers send and receive
the VMF message transparently over a variety of communications media.

The format of the Application Layer PDU is defined in terms of the actual data buffer or data
stream used to exchange the PDU between the Application Layer and the lower communication
layers.  The rationale for using the PDU’s data buffer/stream to define the format is 1) for
consistency with industry standard commercial communications hardware and software (e.g.,
UNIX implementations of TCP/IP), which exchange data with other software when sending or
receiving as a buffer or stream of octets; 2) to provide a definition independent of the specifics of
any other communication layer, consistent with the OSI model principle of making
communication layers independent; and 3) to avoid differences in the bit representations used to
implement communications on different media.  For example, on Ethernet LAN media each octet
is sent least significant bit first, but on FDDI media each octet is sent most significant bit first.
To achieve a universal definition of the PDU format, its representation is defined independent of
the other communication layers.

The relationship of the Application Layer PDU’s data buffer/stream to the Application Layer is
depicted in Figure G-6.  The Application Layer PDU is defined as a buffer or stream of octets.
The rational for treating the PDU as a series of octets is for consistency with the way
communications data is handled by industry standard commercial communications hardware and
software and for independence from platform-dependent byte ordering issues.  The Application
Header and the VMF message are each individually defined as a series of octets for the same
reasons.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-7

FIGURE G-5.  Application layer interaction with other communication layers.

FIGURE G-6.  Exchange of application layer PDU between communication layers.

G.3.2.1  Example of Application Layer PDU.  The construction of an Application Layer PDU is
illustrated by the example in Table G-2.  The first four columns of the table provide a description



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-8

of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations.  The last four columns show the physical encoding of the Application
Layer PDU.  In the fifth column, Field Fragments, the bits of each field are placed in octets.  The
bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in the
least significant unencoded bit of the octet, the next LSB of the field is placed in the next least
significant unencoded bit of the octet, and repeated until all of the bits of the field have been
encoded.  When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field.  This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed.  When a field has groups, the
field encoding procedure is performed starting with the first group, and repeated for each
successive group and individual octet, in order, until the encoding of the field is completed.  The
Unit Reference Number field illustrates the encoding of a field with groups.  Note the LSB of a
field or octet is defined as the bit having the weight of 20 when the field or octet is represented as
a numeric value.  X’s are used to identify bits that are not associated with the field being
encoded.  The sixth column, Octet Value - Binary, assembles the bits contributed by successive
fields into complete octets, represented in binary.  The seventh column, Octet Value, represents
the octet value in binary that should be submitted to the Transport layer.  The last column, Octet
Number, numbers the octets from first to last starting with 0.

When all fields have been encoded, any remaining unencoded bits in the last octet are filled with
zeroes (zero padded).  The Application Header is individually encoded and zero padded.  The
VMF message is individually encoded and zero padded before it is passed to the Application
Layer to have the Application Header added.

Any of the ASCII fields (e.g. Unit Name) in the application header can be terminated by either
an end of text marker, or by using the maximum number of bits. Table G-3 shows how to format
the Unit Name when the Unit Name is used as part of the originator address group. The Unit
Name and Unit Reference Number are mutually exclusive inside the address group – never send
both, Unit Name and Unit Reference Number, in an address group. However if the address group
has a Group Repeat Indicator (GRI) each of the repeatable address groups can be different
address types (e.g. Unit Name or Unit Reference Number).

The Application Header is followed by the VMF message.  The VMF message is shown as a
single 10-octet message to complete the Application Layer PDU.

Figure G-7 provides an illustration of the Application Header as it would appear in serial form at
the lower layers.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-9

TABLE G-2.  Example construction of the application header.

Syntax Field Description Length
(bits)

Value
(Decimal)

Value
(Binary)

Field
Fragments

Octet Value
(Binary)

OCTET
Number

MSB
2n

LSB
20

MSB
2n

LSB
20

MSB
2n

LSB
20

Version 4 1 0001 x  x  x  x  0  0  0 1
FPI Compression Type 1 0 0 x  x  x  0  x  x  x  x
GPI Presence Indicator (Originator) 1 1 1 x  x  1  x  x  x  x  x
FPI Presence Indicator (URN) 1 1 1 x  1  x  x  x  x  x  x

Unit Reference Number (Originator) 24 23 000000000000000000010111 1  x  x  x  x  x  x  x
0  0  0  0  1  0  1  1
0  0  0  0  0  0  0  0
x  0  0  0  0  0  0  0

1  1  1  0  0  0  0  1
0  0  0  0  1  0  1  1
0  0  0  0  0  0  0  0

0
1
2

FPI Presence Indicator (Unit Name) 1 0 0 0  x  x  x  x  x  x  x 0  0  0  0  0  0  0  0 3
GPI Presence Indicator (Recipient) 1 1 1 x  x  x  x  x  x  x  1
GRI Group Repeat Indicator (Recipient) 1 0 0 x  x  x  x  x  x  0  x
FPI Presence Indicator (URN) 1 1 1 x  x  x  x  x  1  x  x

Unit Reference Number (Recipient URN) 24 124 000000000000000001111100 1  1  1  0  0  x  x  x
0  0  0  0  0  0  1  1
0  0  0  0  0  0  0  0
x  x  x  x  x  0  0  0

1  1  1  0  0  1  0  1
0  0  0  0  0  0  1  1
0  0  0  0  0  0  0  0

4
5
6

FPI Presence Indicator (Unit Name) 1 0 0 x  x  x  x  0  x  x  x
GPI Group Presence Indicator (Information) 1 0 0 x  x  x  0  x  x  x  x
GRI Group Repeat Indicator (Message) 1 0 0 x  x  0  x  x  x  x  x

User Message Format 4 2 0010 1 0  x  x  x  x  x  x
x  x  x  x  x  x  0 0

1  0  0  0  0  0  0  0 7

GPI Group Presence Indicator (Message
Identification)

1 1 1 x  x  x  x  x  1  x  x

Functional Area Designator 4 2 0010 x  0  0  1  0  x  x  x

Message Number 7 1 0000001 1  x  x  x  x  x  x  x
x  x  0  0  0  0  0  0

1  0  0  1  0  1  0  0 8

FPI Presence Indicator (Message Subtype #) 1 0 0 x  0  x  x  x  x  x  x
FPI Presence Indicator (File Name) 1 0 0 0  x  x  x  x  x  x  x 0  0  0  0  0  0  0  0 9



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-10

TABLE G-2.  Example construction of the application header.

Syntax Field Description Length
(bits)

Value
(Decimal)

Value
(Binary)

Field
Fragments

Octet Value
(Binary)

OCTET
Number

MSB
2n

LSB
20

MSB
2n

LSB
20

MSB
2n

LSB
20

FPI Presence Indicator (Message Size) 1 0 0 x  x  x  x  x  x  x  0
Operation Indicator 2 0 00 x  x  x  x  x  0  0  x
Retransmit Indicator 1 0 0 x  x  x  x  0  x  x  x
Message Precedence Code 3 7 111 x  1  1  1  x  x  x  x
Security Classification 2 0 00 0  x  x  x  x  x  x  x

x  x  x  x  x  x  x  0
0  1  1  1  0  0  0  0 10

FPI FPI for Control/Release Marking 1 0 0 x  x  x  x  x  x  0  x
GPI GPI for Originator DTG 1 1 1 x  x  x  x  x  1  x  x

Year 7 96 1100000 0  0  0  0  0  x  x  x
x  x  x  x  x  x  1  1

0  0  0  0  0  1  0  0 11

Month 4 7 0111 x  x  0  1  1  1  x  x
Day 5 1 00001 0  1  x  x  x  x  x  x

x  x  x  x  x  0  0  0
0  1  0  1  1  1  1  1 12

Hour 5 8 01000 0 1  0  0  0  x  x  x 0  1  0  0  0  0  0  0 13
Minute 6 32 100000 x  x  1  0  0  0  0  0

Second 6 16 010000 0  0  x  x  x  x  x  x
x  x  x  x  0  1  0  0

0  0  1  0  0  0  0  0 14

FPI DTG Extension 1 0 0 x  x  x  0  x  x  x  x
GPI GPI for Perishability DTG 1 0 0 x  x  0  x  x  x  x  x
GPI GPI for ACK Request Group 1 0 0 x  0  x  x  x  x  x  x
GPI GPI for Response Data Group 1 0 0 0  x  x  x  x  x  x  x 0  0  0  0  0  1  0  0 15
GPI GPI for Reference Message Data 1 0 0 x  x  x  x  x  x  x  0

(Zero Padding) 7 0 0000000 0  0  0  0  0  0  0  x 0  0  0  0  0  0  0  0 16



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-11

TABLE G-3.  Example of a Unit Name as Originator.

Syntax Field Description Length
(bits)

Value
(Decimal)

Value
(Binary)

Field
Fragments

Octet Value
(Binary)

OCTET
Number

MSB
2n

LSB
20

MSB
2n

LSB
20

MSB
2n

LSB
20

Version 4 1 0001 x  x  x  x  0  0  0 1
FPI Compression Type 1 0 0 x  x  x  0  x  x  x  x
GPI Presence Indicator (Originator) 1 1 1 x  x  1  x  x  x  x  x
FPI Presence Indicator (URN) 1 0 0 x  0  x  x  x  x  x  x
FPI Presence Indicator (Unit Name) 1 1 1 1  x  x  x  x  x  x  x 1  0  0  0  0  0  0  0 0

Unit Name (Originator) 448Max “UNITA”
“U” 7 85 1010101 x  1  0  1  0  1  0  1
“N” 7 78 1001110 0  x  x  x  x  x  x  x

x  x  1  0  0  1  1 1
0  1  0  1  0  1  0  1 1

“I” 7 73 1001001 0  1  x  x  x  x  x  x
x  x  x  1  0  0  1  0

0  1  1  0  0  1  1  1 2

“T” 7 84 1010100 1  0  0  x  x  x  x  x
x  x  x  x  1  0  1  0

1  0  0  1  0  0  1  0 3

“A” 7 65 1000001 0 0  0  1  x  x  x  x
x  x  x  x  x  1  0  0

0  0  0  1  1  0  1  0 4

End of text marker (ANSI  ASCII DEL) 7 127 1111111 1  1  1  1  1  x  x  x
x  x  x  x  x  x  1  1

1  1  1  1  1  1  0  0

GPI Presence Indicator (Recipient) 1 1 1 x  x  x  x  x  1  x  x
encode rest of  the message as in Figure G-3

Octet 0 Octet 1 Octet 2 Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16
20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0  0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE G-7.  Application header (octets).



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-12

G.3.3  Transport Layer Data Exchange.  The relationship of the Transport Layer to other
communication layers is shown in Figure G-8.  A user of the Transport Layer exchanges data
with its peer at another node by sending and receiving the Application Layer PDU via the
Transport Layer.  The Transport Layer sends and receives the Application Layer PDU
transparently by producing and exchanging a Transport Layer Protocol Data Unit (PDU) with its
peer at another node.  The Transport Layer PDU consists of the Transport Header concatenated
with the Application Layer PDU, and is sent and received via lower layer communication layers.
The lower communication layers send and receive the Transport PDU transparently over a
variety of communications media.

FIGURE G-8.  Transport layer interaction with other communication layers.

The relationship of the Transport Layer PDU’s data buffer/stream to the Application Layer is
depicted in Figure G-9.  The Transport Layer PDU is defined as a buffer or stream of octets
consisting of the VMF message, Application Header and Transport Header.

G.3.3.1 An Example of UDP Header Construction.  UDP is described by RFC 768.  The UDP
header from RFC 768 consists of 8 octets as shown in Figure G-10 with the example values to be
used for this appendix. .  Since the RFC treats bit 0 as most significant bit (MSB), Figures G-10
and G-11 show B0 as MSB.  For this example, the source has a value of 1581, destination of
1581, length of 30 and the checksum equals 3491.  MIL-STD-188-220 typically treats the least
significant bit as bit 0.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-13

FIGURE G-9.  Exchange of transport layer PDU between communication layers.

0 7 8 15 16 23 24 31
UDP Source (1581) UDP Destination (1581)
UDP Length (30) UDP Checksum (3491)

Bit 0 is most significant bit  (MSB)

FIGURE G-10.  UDP header.

Figure G-11 illustrates the eight octets comprising UDP  with the binary bit patterns.  Each octet
is marked to show both the MSB and LSB of each octet.  It demonstrates how each of the octets
are arranged and passed in order to next layer.

Octet 0 Octet 1 Octet 2 Octet 3
B0 B7 B8 B15 B16 B23 B24 B31

27 20 27 20 27 20 27 20

00000110 00101101 00000110 00101101
UDP Source (1581) UDP Destination (1581)

Octet 4 Octet 5 Octet 6 Octet 7
B0 B7 B8 B15 B16 B23 B24 B31

27 20 27 20 27 20 27 20

00000000 00011110 00001101 10100011
UDP Length (30) UDP Checksum (3491)

FIGURE G-11  Octet representation of UDP header.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-14

The construction of a Transport Layer Header is illustrated by the example in Table G-4.  The
first four columns of the table provide a description of each field in both decimal and binary
representations.  The last two columns show the physical encoding of the Transport Layer PDU.
In the fifth column, Field Fragments, the bits of each field are placed in octets.  The bits(s) of
each field are positioned in an octet such that the LSB of the field is positioned in the least
significant unencoded bit of the octet, the next LSB of the field is placed in the Next last
significant unencoded bit of the octet, and repeated until all of the bits of the field have been
encoded.  When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field.  This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed.. The sixth column, Octet
Value - Binary, assembles the bits contributed by successive fields into complete octets,
represented in binary.  The last column, Octet Number, numbers the octets from first to last
starting with 0.

TABLE G-4.  Example construction of UDP header.

Field Name Length Value
(Dec)

Value
(Bin)

Field Fragments Octet Value
(Bin)

Octet
Number

MSB
215

LSB
20

27 20 27 20

UDP Source 16 1581 0000011000101101 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 1

0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 1

0
1

UDP
Destination

16 1581 0000011000101101 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 1

0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 1

2
3

UDP Length 16 30 0000000000011110 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0

4
5

UDP
Checksum

16 3491 0000000010100011 0 0 0 0 1 1 0 1
1 0 1 0 0 0 1 1

0 0 0 0 1 1 0 1
1 0 1 0 0 0 1 1

6
7

Table G-5 illustrates the eight octets of the Transport Header showing the binary value of the
octet, the octet number (0-7) and the field represented by each octet.  Note that the bit with the
bold italicized font identifies the MSB (2n) of the field, not the octet.

Figure G-12 provides a serial representation of the UDP header as it would appear at the physical
layer.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-15

TABLE G-5.  Octet representation of UDP header.

Octet Value
(Binary)

Octet
Number

Field Name

27 20

0 0 0 0 0 1 1 0 0 Source
0 0 1 0 1 1 0 1 1 Source
0 0 0 0 0 1 1 0 2 Destination
0 0 1 0 1 1 0 1 3 Destination
0 0 0 0 0 0 0 0 4 Length
0 0 0 1 1 1 1 0 5 Length
0 0 0 0 1 1 0 1 6 Checksum
1 0 1 0 0 0 1 1 7 Checksum

Octet 0 Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7
20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1

FIGURE G-12.  Serial representation of UDP header.

G.3.4  Network Layer Data Exchange.  The relationship of the Network Layer to other
communication layers is shown in Figure G-13.  A user of the Network Layer exchanges data
with its peer at another node by sending and receiving the Transport Layer PDUs via the
Network Layer.  The Network Layer sends and receives the Transport Layer PDUs transparently
by producing and exchanging a Network Layer PDU.  The Network Layer PDU consists of the
Network Headers concatenated with the Transport Layer PDU, and is sent and received via
lower layer communication layers.  The lower communication layers send and receive the
Network Layer PDU transparently over a variety of communications media.

The relationship of the Network Layer PDU’s data buffer/stream to the Transport Layer is
depicted in Figure G-14. The Network Layer PDU is defined as a buffer or stream of octets
consisting of the VMF message, Application Header, Transport Header and Network Headers.
There are two Network Headers in the Network Layer PDU when using MIL-STD-188-220.

The Internet Protocol (IP) is described by RFC 791.  The IP header from RFC 791 is shown in
Figure G-15 with the example values to be used for this appendix.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-16

FIGURE G-13.  Network layer interaction with other communication layers.

FIGURE G-14.  Exchange of network layer PDU between communication layers.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-17

0
0  1 2  3 4  5 6  7 8  9

1
0  1 2  3 4  5 6  7 8  9

2
0  1 2  3 4  5 6  7 8  9

3
0  1

Ver (4) IHL (5) Type of Service (0) Total Length (50)
Identification (1) Flag (0) Fragment Offset (0)

Time to Live (50) Protocol (17) Header Checksum (4093)
Source Address (192.31.124.65)

Destination Address (192.31.124.61)

FIGURE G-15.  IP header.

G.3.4.1  Example of Internet Layer Header.  The construction of an Internet Layer Header is
illustrated by the example in Table G-6.  The first four columns of the table provide a description
of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations.  The last three columns show the physical encoding of the Internet
Layer Header.  In the fifth column, Field Fragments, the bits of each field are placed in octets.
The bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in
the least significant unencoded bit of the octet, the next LSB of the field is placed in the next
least significant unencoded bit of the octet, and repeated until all of the bits of the field have
been encoded.  When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field.  This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed.  X’s are used to identify bits
that are not associated with the field being encoded.  The sixth column, Octet Value - Binary,
assembles the bits contributed by successive fields into complete octets, represented in binary.
The last column, Octet Number, numbers the octets from first to last starting with 0.

Figure G-16 illustrates the Internet Header demonstrating the relationship between the individual
bits (B0 - B7), the bit weighting (27 - 20), the individual fields and the example bit patterns
associated with each field.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-18

TABLE G-6.  Example construction of IP header.

Field Name Length Value
(Dec)

Value
(Binary)

Field
Fragments

Octet Value
(Binary)

Octet
Number

2n 20 2n 20 2n 20

Version 4 4 0100 0100xxxx
Internet Header Length 4 5 0101 xxxx0101 01000101 0
Type of Service 8 0 00000000 00000000 00000000 1
Length 16 50 0000000000110010 00000000

00110010
00000000
00110010

2
3

Identification 16 111 0000000000000001 00000000
00000001

00000000
00000001

4
5

Flags 3 0 000 000xxxxx
Fragmentation Offset 13 0 0000000000000 xxx00000

00000000
00000000
00000000

6
7

Time to Live 8 50 00110010 00110010 00110010 8
Protocol 8 17 00010001 00010001 00010001 9
Header Checksum 16 4093 0000111111111101 00001111

11111101
00001111
11111101

10
11

Source Address 32 192.31.124.65 1100000000011111
0111110001000001

11000000
00011111
01111100
01000001

11000000
00011111
01111100
01000001

12
13
14
15

Destination Address 32 192.31.124.61 1100000000011111
0111110000111101

11000000
00011111
01111100
00111101

11000000
00011111
01111100
00111101

16
17
18
19



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-19

Octet 0 Octet 1 Octet 2 Octet 3
B0 B7 B0 B7 B0 B7 B0 B7

27 20 27 20 27 20 27 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
 Ver  (4) IHL (5) Type of Service (0) Total Length (50)

Octet 4 Octet 5 Octet 6 Octet 7
B0 B7 B0 B7 B0 B7 B0 B7

27 20 27 20 27 20 27 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Identification (1) Flag (0) Fragment Offset (0)

Octet 8 Octet 9 Octet 10 Octet 11
B0 B7 B0 B7 B0 B7 B0 B7

27 20 27 20 27 20 27 20

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1
Time (50) Protocol (17) Header Checksum (4093)

Octet 12 Octet 13 Octet 14 Octet 15
B0 B7 B0 B7 B0 B7 B0 B7

27 20 27 20 27 20 27 20

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1
Source Address (192.31.124.65)

Octet 16 Octet 17 Octet 18 Octet 19
B0 B7 B0 B7 B0 B7 B0 B7

27 20 27 20 27 20 27 20

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1
Destination Address (192.31.124.61)

FIGURE G-16.  Octet representation of IP header.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-20

G.3.4.2  Example of Intranet Layer Header.  The construction of an Intranet Layer Header is
illustrated by the example in Table G-7.  The first four columns of the table provide a description
of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations.  The last three columns show the physical encoding of the Intranet
Layer Header.  In the fifth column, Field Fragments, the bits of each field are placed in octets.
The bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in
the least significant unencoded bit of the octet, the next LSB of the field is placed in the next
least significant unencoded bit of the octet, and repeated until all of the bits of the field have
been encoded.  When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field.  This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed.  X’s are used to identify bits
that are not associated with the field being encoded.  The sixth column, Octet Value - Binary,
assembles the bits contributed by successive fields into complete octets, represented in binary.
The last column, Octet Number, numbers the octets from first to last starting with 0.  This
example only illustrates the Intranet Header fields that must be transmitted as a minimum.

TABLE G-7.  Example construction of Intranet header (minimum).

Field Name Length Value
(Decimal)

Value & Byte
Representatio

n
(Binary)

Field
Fragments

Octet Value
(Binary)

Octet
Number

2n 20 27 20 27 20

Version Number 4 0 0000 xxxx0000
Message Type 4 4 0100 0100xxxx 01000000 0
Intranet Header
Length

8 3 00000011 00000011 00000011 1

Type of Service 8 0 00000000 00000000 00000000 2

The Intranet layer is defined in MIL-STD-188-220 and is shown in Figure G-17 with the
example values used in this appendix.

Octet 0 Octet 1 Octet 2
20 27 20 27 20 27

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Version (0) Message Type (4) Intranet Header Length (3) Type of Service (0)

FIGURE G-17.  Intranet header .

Figure G-18 provides a serial representation of the Network Layer PDU as it would appear at the
physical layer.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-21

Intranet header IP header
Octet 0 Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7 Octet 8 Octet 9 Octet 10
20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

00000010 11000000 00000000 10100010 00000000 00000000 01001100 00000000 10000000 00000000 00000000

IP header (continued)
Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16 Octet 17 Octet 18 Octet 19 Octet 20 Octet 21
20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

01001100 10001000 11110000 10111111 00000011 11111000 00111110 10000010 00000011 11111000 00111110

IP header
(end)
Octet 22
20 27

10111100

FIGURE G-18.  Serial representation of network layer PDU.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-22

G.3.6  Data Link Layer Data Exchange.  The relationship of the Data Link Layer to other
communication layers is shown in Figure G-19. A user of the Data Link Layer exchanges the
Network Layer PDU with its peer at another node by sending and receiving the Network PDU
via the Data Link Layer.  The Data Link Layer sends and receives the VMF message
transparently by producing and exchanging a Data Link Layer PDU with its peer at another node.
The Data Link Layer PDU consists of the  Transmission Header, and Data Link Frame Header,
Network PDU, and the Data Link Frame Trailer, and is sent and received via the Physical layer.
The Physical layer sends and receives the VMF message transparently over a variety of
communications media.

Figure G-19.  Data link layer interaction with other communication layers.

The format of the Data Link Layer PDU is defined in terms of the actual data buffer or data
stream used to exchange the PDU between the Network Layer and the Physical Layer.  The
relationship of the Data Link Layer PDU’s data buffer/stream to the Intranet Layer is depicted in
Figure G-20.  The Data Link Layer PDU is defined as a buffer or stream of octets consisting of
the Transmission Header, Data Link Frame Header, Network PDU and Data Link Layer trailer.

G.3.6.1  Example of Data Link Layer PDU.  The Data Link Layer PDU consists of the
Transmission Header, Data Link Frame Header, Followed by the information field and Data
Link Frame Trailer as shown in Figure G-21.  The information field consists of the Network
PDU described previously (VMF message, Application Header, Transport Header, IP Header
and Intranet Header).



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-23

FIGURE G-20.  Exchange of data link layer PDU between communication layers.

Trans-
mission
Header

Data
Link

Frame
Header

Information Field Data Link Frame
Trailer

FIGURE G-21.  Data link layer PDU.

Table G-8 illustrates the Data Link Frame Header, and Table G-9 illustrates the Data Link Frame
Trailer.  The first four columns of the tables provide a description of each field in the example,
the field length in bits, and the value of the field in both decimal and binary representations.  The
last three columns show the physical encoding of the Data Link Frame.  In the fifth column,
Field Fragments, the bits of each field are placed in octets.  The bit(s) of each field are positioned
in an octet such that the LSB of the field is positioned in the least significant unencoded bit of
the octet, the next LSB of the field is placed in the next least significant unencoded bit of the
octet, and repeated until all of the bits of the field have been encoded.  When an octet is filled
before all the bits of a field are encoded, the process is continued encoding the next octet with
the remaining bits of the field.  This field/octet encoding procedure is performed starting with the
first field and octet, and repeated for each successive field and individual octet, in order, until the
encoding is completed. The sixth column, Octet Value - Binary, assembles the bits contributed
by successive fields into complete octets, represented in binary. The last column, Octet Number,
numbers the octets from first to last starting with 0.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-24

TABLE G-8.  Example construction of data link frame header.

Field Name Length Value
(Dec)

Value
(Binary)

Field
Fragments

Octet Value
(Binary)

Octet
Number

2n 20 2n 20

Flag 8 126 01111110 01111110 01111110 0
Command/Response Bit 1 0 0 xxxxxxxx0
Source Address 7 7 0000111 0000111x 00001110 1
Extension Bit 1 1 1 xxxxxxx1
Destination Address 7 4 0000100 0000100x 00001001 2
Control Field 8 19 00010011 00010011 00010011 3

TABLE G-9.  Example construction of data link frame trailer.

Frame Check Sequence
(transmitted MSB first)

32 162159487 00001001101010100101110101111111 00001001
10101010
01011101
01111111

00001001
10101010
01011101
01111111

0
1
2
3

Flag 8 126 01111110 01111110 01111110 4



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-25

Table G-10 illustrates the octets comprising the Data Link Frame showing the actual bit patterns
from the previous examples for each layer, the octet number based on each individual layer, and
the octet number based on entire Data Link Frame.  This data is shown in serial representation as
it would be transmitted in Figure G-22.

TABLE G-10.  Octets comprising data link frame.

27 20 Nomenclature Octet Number
(Individual Layer)

Octet Number
(Entire Transaction)

01111110 Flag 0 0
00001110
00001001
00010011

Source Address
Destination Address
Control Field

1
2
3

1
2
3

01000000 0 4
00000011 INTRANET HEADER 1 5
00000000 2 6
01000101 0 7
00000000 1 8
00000000 2 9
00110010 3 10
00000000 4 11
00000001 5 12
00000000 6 13

IP HEADER

01111100 18 25
00111101 19 26
00000110 0 27
00101101 1 28
00000110 2 29

UDP HEADER

10100011 7 34



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-26

TABLE G-10.  Octets comprising data link frame.

27 20 Nomenclature Octet Number
(Individual Layer)

Octet Number
(Entire Transaction)

11100001 0 35
00001011 1 36

01110000 10 45
00000100 11 46
01011111 APPLICATION HEADER 12 47
01000000 13 48

00000100 15 50
00000000 16 51
11001000 0 52
10100000 1 53
11110000 2 54
11000000 3 55

CHECKFIRE MESSAGE

00000000 4 56
00001001 Note: FCS transmitted MSB First 0 57
10101010 FCS 1 58
01011101 2 59
01111111 3 60
01111110 Flag 0 61



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-27

DATA LINK FRAME HEADER INTRANET HEADER IP
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

20 27 20 27 20 27 20 27

FLAG SRC DST CNTL V T LEN TOS L V TOS Total Length Identification Offset flag Offset

01111110 01110000 10010000 11001000 0000 0010 11000000 00000000 1010 0010 00000000 00000000 01001100 00000000 10000000 00000 000 00000000

IP UDP APP. HEADER APP. HEADER
25 26 27 28 29 30 34 35 36 45 46 47 48

20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27

DESTINATION SOURCE DESTINATION CHKSM GPI-FPI-ORIG Message Size- etc. GPI-YR

00111110 10111100 01100000 10110100 01100000 10110100 11000101 10000111 11010000 00001110 00100000 11111010 00000010

APP. HEADER VMF MESSAGE  LINK FRAME TRAILER
50 51 52 53 54 55 56 57 58 59 60 61

20 27 20 27 20 27 20 27 20 27 20 27 20 27 27 20 27 20 27 20

27 20 20 27

Min/Sec-etc. CF-etc. GROUP-etc Pad FCS FLAG
00100000 00000000 00010011 00000101 00001111 00000011 00000000 00001001 10101010 01011101 01111111 01111110

FIGURE G-22.  Serial representation of data link layer PDU.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-28

G.3.6.1.1  Zero Bit Insert/v36 scramble/FEC/TDC of the data link frame.  The Data Link Frame
must be zero inserted to prevent any part of the data accidentally being interpreted as a Frame
Flag.  Also in our example scrambling, FEC and TDC are being used. Figure G-23 shows some
of the example data  before applying zero-bit insertion, scrambling, FEC or TDC.  After zero bit
insertion, scrambling, FEC and TDC, the fields are not easy to identify; therefore field names are
not shown.

1 word 2 word 3 word

20 27 20 27 20 27 20 27 20 27 20 27

0x7e70 0x90c8 0x02c0

30 word 31 word 32 word

20 27 20 27 20 27 20 27 20 27 20 27

0x09aa 0x5d7f 0x7e00

FIGURE G-23.  Data before zero bit insertion in transmission order.

The following is a Hex dump of the data link frame in the different stages: (a) zero bit inserted,
(b) scrambled, (c) FEC, and (d) TDC:

Note: In the following dumps the 16 bit values are in transmission order. The TWC in the
physical layer is defined in words and fields are no longer easily distinguishable.

a. Data after zero bit insertion (505 bits plus 7 padding bits)
0x7e70 0x90c8 0x02c0 0x00a2 0x0000 0x4c00 0x8000 0x004c 0x88f0 0xbe81 0xf60f
0x9040 0x7d83 0xe5e3 0x05a3 0x05a0 0x03c5 0x862c 0x3e40 0x0002 0x9f00 0x0002
0x5200 0x1c41 0xf202 0x0420 0x0013 0x050f 0x0300 0x09aa 0x5d7d 0xbf00

b. Data after V.36 scrambling (512 bits)
0x8f80 0x872a 0xa161 0x7a0a 0xbfaa 0x524c 0x50c3 0x50aa 0x024c 0x6cc2 0x9ca9
0x6b17 0xe9f3 0x0403 0xbda9 0xfe4c 0xfc54 0x3014 0x02e2 0xe3a7 0xb9fa 0xdf90
0x0006 0x2754 0xf1bf 0x5f20 0x0b70 0xe695 0x59a2 0xfc47 0x616b 0x5d41

c. Data after FEC(Golay 24,12) (data size in bits:  0x0408 plus 8 padding bits)
Golay (24,12) is derived from Golay (23,12):See paragraph F 4.1 for details.
0x8f8a 0x5a08 0x7898 0x2aae 0x8616 0x140a 0x7a0b 0xf0ab 0xf3e8 0xaa54 0x7624
0xc5a0 0x50c6 0xde35 0x0622 0xaa06 0x0a24 0xc5a0 0x6cc0 0x4029 0xc884 0xa960
0x08b1 0x7c8c 0xe9f3 0x1e30 0x424a 0x03b9 0xb8da 0x9dc0 0xfe40 0x8acf 0xc6f6
0x543d 0xc201 0x49f0 0x02e8 0xa22e 0x3632 0xa7b7 0x3c9f 0xa4d0 0xdf93 0x3e00
0x0000 0x0622 0x6a75 0x4a8e 0xf1bd 0xe6f5 0xfae8 0x200f 0x68b7 0x0c9a 0xe69b
0x5e55 0x9a5c 0xa2f3 0x54c4 0x7c94 0x6169 0x9cb5 0xd5ec 0x4105 0x5c00



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-29

d. Data after TDC(16,24) (data size in bits:  0x0480)
0x8623 0x0888 0x2f7f 0x18c1 0xee2e 0x9158 0xbe20 0x8447 0xa59c 0x479f 0x6403
0x5601 0xe805 0x33f1 0xace0 0x0d10 0x6d95 0x8e88 0x0f50 0xca80 0xd4a3 0x2285
0xb2e0 0x0000 0x9c38 0x9e09 0xc861 0x5a19 0x9c58 0x0e7b 0x3cfa 0xa539 0xb4b8
0xcd81 0xa2f2 0xb268 0x3381 0x1670 0xc46b 0xb328 0x3f91 0x5712 0x25ea 0xa578
0xe82b 0x8429 0xcecb 0x0000 0xdb40 0xcda0 0xfac0 0xd440 0x0000 0x5d40 0x1a00
0xd4e0 0xce40 0x43c0 0xc380 0xcf40 0xfd80 0xb160 0x6e00 0xaae0 0xd1c0 0xee60
0xe040 0x1fa0 0x7ce0 0x8fe0 0x9800 0x0000

G.3.6.1.2 Construction of the Transmission Header.  The Transmission Header precedes the data
link frame and formatted as defined in Table G-11.

G.3.6.1.3  Zero Bit Insert/v36 scramble/FEC of the Transmission Header.  The Transmission
Header must be zero inserted to prevent any part of the data accidentally being interpreted as a
Frame Flag.  After zero bit insertion, the fields are not easy to identify; therefore field names are
not shown. The following is a Hex dump of the Transmission Header of zero bit inserted:

Transmission Header after zero bit insertion (Size In Bits 0x0040)
0x7ee0 0x001c 0x2119 0x707e

G.3.6.1.4  Completed Data Link Layer PDU to be passed to the physical layer.  The data link
layer passes the Data Link Layer PDU to the physical layer The elements of a Data Link Layer
PDU include one transmission header and one or more PDUs. The following complete data link
PDU (consisting of transmission header and data link frame) will be passed to the physical layer:

Complete Data Link Layer PDU

Transmission Header:
0x7ee0 0x001c 0x2119 0x707e

b. Data Link Layer Frame (72 16 bit words):
0x8623 0x0888 0x2f7f 0x18c1 0xee2e 0x9158 0xbe20 0x8447 0xa59c 0x479f 0x6403
0x5601 0xe805 0x33f1 0xace0 0x0d10 0x6d95 0x8e88 0x0f50 0xca80 0xd4a3 0x2285
0xb2e0 0x0000 0x9c38 0x9e09 0xc861 0x5a19 0x9c58 0x0e7b 0x3cfa 0xa539 0xb4b8
0xcd81 0xa2f2 0xb268 0x3381 0x1670 0xc46b 0xb328 0x3f91 0x5712 0x25ea 0xa578
0xe82b 0x8429 0xcecb 0x0000 0xdb40 0xcda0 0xfac0 0xd440 0x0000 0x5d40 0x1a00
0xd4e0 0xce40 0x43c0 0xc380 0xcf40 0xfd80 0xb160 0x6e00 0xaae0 0xd1c0 0xee60
0xe040 0x1fa0 0x7ce0 0x8fe0 0x9800 0x0000

G.3.7  Physical Layer Data Exchange.  The relationship of the Physical Layer to other
communication layers is shown in Figure G-24. A user of the Physical Layer exchanges the Data
Link Layer PDU with its peer at another node by sending and receiving the Data Link PDU via
the Physical Layer.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-30

TABLE G-11.  Example construction of data link transmission header.

Field Name Length Value
(Dec)

Value
(Binary)

Field
Fragments

Octet
Value

(Binary)

Octet
Number

2n 20 2n 20

Flag 8 126 01111110 01111110 01111110 0
FEC 1 0 1 xxxxxxx1
TDC 1 0 1 xxxxxx1x
Scramble 1 0 1 xxxxx1xx
Topology Update Id 3 0 000 xx000xxx
Transmit Queue 10 0 0000000000 00xxxxxx

00000000
00000111
00000000

1
2

FCS 32 471931248 00011100001000010001100101110000 00011100
00100001
00011001
01110000

00011100
00100001
00011001
01110000

3
4
5
6

Flag 8 126 01111110 01111110 01111110 7

1 2 3 85 86 87

0x64f2 0xf296 0x905e 0xe098 0x0000 0x0000

0110010011110010 1111001010010110 1001000001011110 1110000010011000 0000000000000000 0000000000000000

FIGURE G-24.  Serial representation of physical layer transmission unit.



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-31

G.3.7.1  Physical Layer Processing Example.  The Physical layer encodes data submitted by the
data link layer in a format to meet the physical media’s requirements.  This example does not
address the electrical or mechanical functions normally associated with the physical layer
protocols. At the physical layer the transmission header is extracted and the TWC is calculated,
the Transmission header is FEC & TDC encoded.(Note the other physical layer functions
(COMSEC, DMTD, etc) are not shown in this example.

TWC Transmission Header Data Link Frame

G.3.7.1.1  Transmit Word Count (TWC).  TWC is calculated across the data link frame plus the
size of the encoded Transmission Header  & TWC size (encoded Transmission Header & TWC
[10.5 16 bit words]). Therefore this Physical layer PDU’s TWC would be calculated as follows:

TWC =  encoded data link frame + encoded Transmission Header and TWC
TWC =  72 words + 10.5 words (rounded up to nearest word)
TWC =  83 words

TWC (83) Transmission Header Data Link Frame

Transmission header including TWC  (size in bits:  0x004C)
0xca07 0xee00 0x01c2 0x1197 0x07e0

G.3.7.1.2  FEC & TDC of Transmission Header.  The Transmission Header must have FEC &
TDC encoding applied. Below is the Transmission Header in the different stages of  FEC &
TDC:

a. Transmission header/with TWC after FEC (Golay 24,12) (size in bits:  0x00a8)
Golay (24,12) is derived form Golay (23,12):See paragraph F 4.1 for details.
0xca0f  0x587e  0xe806 0x0000 0x001c 0x20c8 0x1191 0xfe70 0x75a4 0xe005 0x2600

b. Transmission header/with TWC after TDC (7,24)(size in bits 0x00a8)
0x838d 0x1aed 0x0a30 0x0448 0x8950 0x6c10 0xe047 0x1d30 0x3c49 0x89d2 0x8000



MIL-STD-188-220B:  20 January 1998
(New Appendix)

G-32

G.3.7.1.3  The Physical Layer PDU.  Complete message including 64-bit frame synchronization,
TWC, transmission header, and data link frame. (size in bits  0x0568):

0x64f2 0xf296 0x905e 0xadd9 0x838d 0x1aed 0x0a30 0x0448
0x8950 0x6c10 0xe047 0x1d30 0x3c49 0x89d2 0x8086 0x2308
0x882f 0x7f18 0xc1ee 0x2e91 0x58be 0x2084 0x47a5 0x9c47
0x9f64 0x0356 0x01e8 0x0533 0xf1ac 0xe00d 0x106d 0x958e
0x880f 0x50ca 0x80d4 0xa322 0x85b2 0xe000 0x009c 0x389e
0x09c8 0x615a 0x199c 0x580e 0x7b3c 0xfaa5 0x39b4 0xb8cd
0x81a2 0xf2b2 0x6833 0x8116 0x70c4 0x6bb3 0x283f 0x9157
0x1225 0xeaa5 0x78e8 0x2b84 0x29ce 0xcb00 0x00db 0x40cd
0xa0fa 0xc0d4 0x4000 0x005d 0x401a 0x00d4 0xe0ce 0x4043
0xc0c3 0x80cf 0x40fd 0x80b1 0x606e 0x00aa 0xe0d1 0xc0ee
0x60e0 0x401f 0xa07c 0xe08f 0xe098 0x0000 0x0000



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-1

APPENDIX BH

INTRANET TOPOLOGY UPDATE

B1.H.1.  General.

B1.1.H.1.1.  Scope.  This appendix describes a procedure for active intranet topology updates.
The intranet is defined as all processors and CNRs  within a single transmission channel.

B1.2.H.1.2.  Application.  This appendix is a mandatory part of MIL-STD-188-220.  The
information contained herein is intended for compliance.

B2.H.2.  Applicable Documents.  This section is not applicable to this appendix.

B3.H.3.  Problem Overview.  Figure B-1H-1 shows a sample extended CNR network.  Each
node labeled A through H is considered to be a radio with an associated communication
processor.  The dotted ovals indicate subsets of connectivity.  Figure B-2H-2 is a link diagram of
the sample network. (The link between nodes B and D is not shown; the link is temporarily
unusable due to line-of-sight obstruction, distance or other physical phenomena.) Assuming the
nodes know nothing about neighbor nodes that are more than 1 hop away, they need to exchange
connectivity information.  The topology update packet is used to exchange topology information
to build up a more complete view of the intranet's topology at every node.

                  Figure B-1.  Sample Intranet



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-2

            Figure B-2.  Link Diagram of Sample Network

FIGURE H-1.  Sample intranet.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-3

FIGURE H-2.  Link diagram of sample network.

B3.1.  SpanningH.3.1.  Routing Trees.  Each node should store topology information as a
spanning tree graph.  Figure B-3 shows the spanningrouting tree graph. Considering the network
in Figure H-2,  Figure H-3 shows the routing tree for nodes A and C prior to the exchange of any
topology information. The routing trees for A and C contain only their nearest neighbors - those
nodes which they can talk to directly.  Similar graphs would exist for all other nodes.  The graphs
clearly show that all nodes are one hop away.

FIGURE H-3.  Routing tree for nodes A and C.

          Figure B-3.  Spanning Tree for Nodes A and C



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-4

B4.H.4.  Topology Updates

H.4.1.  Exchanging Routing Trees. Nodes in the network gain more topology information by
multicasting their individual routing trees to their nearest neighbor nodes. This exchange of
routing trees will percolate more complete topology information through the network.  For
example, assume the routing trees for all nodes in B4.1.  Exchanging Spanning Trees.  After
node C broadcastsFigure H-2 initially contain only nearest neighbors (nodes who are in direct
communication with the given node). If  node C multicasts its topology information to all nodes
one hop away (those which are nearest neighbors), all neighbor nodes integrate C's
spanningrouting tree into their own.  Node A would integrate the graph for Node C into its
spanningrouting tree as shown in Figure B-4.H-4.

Figure B-4.  Concatenated Spanning Tree for Node A

FIGURE H-4.  Concatenated routing tree for node A.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-5

Before the spanningrouting tree is saved, Node A prunes any successive instances of itself and
subsequent successors. itself. For instance, in Figure B-4,H-4, the link from A to C is the same as
the link from C to A; therefore, the link from C to A is removed. All redundant identical links are
also pruned.  These are links with the order of the end points reversed.

B4.2.H.4.2.  Topology Tables.  The topology table for A is shown in Table B-1.H-1.  It assumes
no nodes are in quiet mode, all nodes can participate in relay, and all links have a cost of 1.  The
actual link layer addresses for the nodes would be placed into the table in place of the symbols
A, B, C, etc.  The extension bit in the address octet would always be set to 0 for topology
updates.

                                            Table B-1.  Topology Table for Node A.
TABLE H-1.  Topology table for node A.

Node
Address

Node
Predecessor

Hops Cost NR Quiet

Node
Address

Node Ancestor Hops Cost NR Quiet

B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
B C 2 1 0 0
D C 2 1 0 0
E C 2 1 0 0
F C 2 1 0 0

There are two entries for node B indicating that there are two paths from A to B.  This table
cancould be immediately copied to the respective fields of a topology update packet.  The
ancestorpredecessor address is not included in the topology update packet for nearest neighbor
nodes because the ancestorpredecessor is, by definition, the originator node.

B4.3.  Sparse SpanningH.4.3.  Sparse Routing Trees.  Exchanging full spanning tree
graphsrouting tree tables provides full topology information; however, the amount of data in the
spanningrouting tree gets very large, especially for fully connected nets.  The number of links in
a fully connected net =with n nodes is n(n-1)/2. Although full routing trees should be stored by a
node, exchanging these routing trees may consume too much bandwidth. A smaller copy of the
full routing tree (called a sparse routing tree) should be prepared for transmission to neighbor
nodes. To reduce the number of branches in the spanningrouting tree, some of the paths to
duplicate nodes on the tree are pruned according to following rules:

Only the shortest paths tofrom the root node to another node are retained.

b.         For redundant paths from a root node to a another node which are the same length
(same number of links in the routing tree), at most 2 are retained. Some
redundancy in paths is necessary for volatile networks.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-6

For the previous example,In the above example the path from C to B and C to D would be
pruned, since there are already shorter paths from A to C and A to D. The pruning yields the
sparse routing tree in Figure H-5 and Table H-2. pruned yielding the sparse spanning tree in
Figure B-5 and Table B-2.  If two or more branches have the same end nodes and the same
length (in number of hops), they are all retained.  The number of retained branches may be
limited in large radio networks to again limit the size of the update packets.

                                        Table B-2.  Sparse Spanning Tree for Node A.

Node
Address

Node Ancestor Hops Cost NR Quiet

FIGURE H-5.  Sparse routing tree for node A.

          Figure B-5.  Sparse Spanning Tree for Node A



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-7

TABLE H-2.  Sparse routing tree for node A.

Node
 Address

Node
 Predecessor

Hops Cost NR Quiet

B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
E C 2 1 0 0
F C 2 1 0 0

The final spanningrouting tree for Node A, after all the nodes exchange their sparse
spanningrouting trees, is shown in Figure B-6 and Table B-3.  H-6 and Table H-3. Note that
figure H-6 shows more than 2 paths between nodes G and A and H and A; however, the sparse
routing tree table, which is the information actually transmitted, shows only two entries for nodes
G and H.  The pruning rules stated above have not been violated.  They have been applied to the
entries in the sparse routing table.  The sparse routing graph is deduced from the table.  Thus,
quite a few redundant paths can be derived from the structure of the sparse routing table.

                                                                           

Table B-3.  Final Spanning Tree for Node A.

Node
Address

Node
Predecessor

Hops Cost NR Quiet

          Figure B-6.  Final Spanning Tree for Node A



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-8

FIGURE H-6.  Final routing tree for node A.

TABLE H-3.  Final routing tree for node A.

Node
Address

Node
Predecessor

Hops Cost NR Quiet

B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
E B 2 1 0 0
F B 2 1 0 0
E C 2 1 0 0
F C 2 1 0 0

E D 2 1 0 0
F D 2 1 0 0

G E 3 1 0 0
H E 3 1 0 0
G F 3 1 0 0
H F 3 1 0 0

B4.4.H.4.4.  Rules For Exchanging Topology Updates.  Topology update packets are transmitted
exclusively using a global multicast address.

B4.4.1.H.4.4.1.  Topology update triggers.  Topology updates are triggered for node I by the
following:

a). Node I detects a failed link and the link is to a node that is not a static
node (link quality =7)

b). Node I detects a new or recovered link and the link is to a node that is not
a static node (link quality =7)

c). Node I detects a change in the quality of a link - applicable only if link
costs are used.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-9

d). Node I receives a topology update from another node which modifies its
sparse spanningrouting tree.

e). Node I changes its response modeQuiet Mode status and wishes to
announce this change.

f). Node I changes its relay capability status.

g). Node I receives a topology update request.

B4.4.2.H.4.4.2.  Sending topology update messages.  Optimally, topology updates should be
concatenated with other traffic for queuing by the link layer.  Topology Update Messages are
sent to the global multicast address using Type 1 Unnumbered Information Frames which are not
acknowledged.  The precedence of the Topology Update RequestMessage is user configurable.

B4.4.3.  If no other traffic is queued by the link layer, theThe updates should be transmitted no
more often than once every MIN_UPDATE_PER.  MIN_UPDATE_PER is measured in minutes
and is set by the network administrator when the nodes are configured.  The network
administrator can disable topology update transmission by setting MIN_UPDATE_PER to zero.
Update packets are superseded by newer packets if they have not been queued at the link layer.

B4.5.  Non-Relayers.  Nodes wishing to be non-relayers must add a separate entry into the sparse
spanning table and update packets with NODE ADDRESS and NODE ANCESTOR set to their
own address and the NR bit set to 1.
H.4.5.  Non-relayers.  In the Topology Update broadcast by non-relayers, the non-relayer
indicates its status by setting the NR bit to one in its entry of the Topology Update message.
Additionally, the non-relayer includes all one-hop, and only one-hop, neighbors (because
relaying by this node is not permitted).  Non-relayer nodes remain in the sparse spanningrouting
trees; however, they must not have any subsequent branches.  Their entries in the
spanningrouting table must have the NR bit set to 1.

B4.6.H.4.6.  Quiet Nodes.  Nodes in the quiet state may appear in the sparse spanningrouting
tables and in update packets with the QUIET bit set to 1; however, they must not have any
subsequent branches in the spanningrouting tree.  Nodes wishing to announce that they are
entering quiet mode must add a separate entry into the sparse spanningrouting table and update
packets with NODE ADDRESS and NODE PREDECESSORANCESTOR set to their own
address and the QUIET bit set to 1.

B4.7.H.4.7.  Topology Update Request Messages.  The Topology Update Request Message is
triggered whenever there is a mismatch between the topology update ID received from a station
and the value that had been stored previously.  The Topology Update Request message may also
be sent whenever a data link transmission is Message will usedetected from a previously
unknown neighbor.  The Topology Update Request message uses a Type 1 Unnumbered
Information frame which is not acknowledged and is addressed according to aparagraphs
5.4.1.1.7, 5.4.1.1.9, and 5.4.1.3.  The Topology Update Request message is addressed to specific



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

H-10

stations at the Intranet layer station.and may be sent to the global multicast address at the data
link layer.  The precedence of the Topology Update Request Message is user-configurable.  The
Topology Update Request Message may be sent no more often than MIN_UPDATE_PER/2.
This constant allows up to two requests to be sent to a node while the node is waiting for the
MIN_UPDATE_PER timer to expire.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-1

APPENDIX I

SOURCE DIRECTED RELAY

I.1.  General.

I.1.1  Scope.  This appendix describes a procedure for relaying packets across a CNR intranet
using source directed routes.  The intranet is defined as all processors and CNRs within a single
transmission channel.

I.1.2  Application.  This appendix is a mandatory part of MIL-STD-188-220.  The information
contained herein is intended for compliance.

I.2.  Applicable Documents.  None.

I.3.  Problem Overview.  Intranet relaying is required when nodes in a intranet need to
communicate, but are not nearest neighbors capable of hearing one another's radio transmissions.

I.4.  Procedure.

I.4.1  Forward Routing.  Source Directed Relay provides a simple non-dynamic procedure for
relaying a packet from an originator to one or more destinations.  The source must calculate the
path through the intranet network to reach each destination.  These paths are based on the
topology and connectivity table.  The specific source directed route for each destination must be
encoded into the intranet header.  If the routes for two or more destinations share common links
along the paths, the two paths should be merged together.  As a result of this, the resulting paths
should not have any common nodes.

The address of successive relayers, destinations, and their associated status bytes are placed in
the intranet header in order of progressing through the spanningrouting tree.  Nodes which are
one hop away and destinations only are placed into the Intranet Header first with their DES bit
set to 1.  The next entries into the Intranet Header are the relay paths which may include nodes
which are relayers and destinations.  Each relay path starting at the source is completed before
another relay path with its origin at the source is begun.  Within the status byte for each relayer
the REL bit is set to 1 and S/D is set to 0.  If the relayer is also a destination in addition to being
a relayer, the DES bit is set to 1.  If there are multiple destinations that are not relayers following
a relayer, each of these destination addresses and their status bytes should be listedsequentially in
the header after the relay node sequentially in the header.order of their appearance in the path.
Within this group the extension bit within the destination/relay address field is 0 for destinations
except the last destination whose extension bit is set to 1.  All destinations have not used.  The
last address can be determined from the Intranet header length.  The last address in a group can
be determined from the DIS field of the Destination/Relay Status Byte defined in 5.4.1.1.7.their
DES bit set to 1.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-2

All destinations in the relay path that are required to provide end-to-end intranet
acknowledgements have set the ACK bit in their status bytes to 1. For all destinations, the
DISTANCE field is set to the number of hops between the originator and the ultimate
destination host for the relay.  For nodes that perform relay and are not destinations for the given
relay (REL  bit set and DES unset), the DISTANCE field has no meaning.

I4.2  End-to-end Acknowledgements.  End-to-end Acknowledgements
I.4.2  End-to-end Acknowledgments.  End-to-end Acknowledgments are formed by the ith final
destination nodes upon receipt of an intranet header with ACK  bit set in DESTINATION
STATUS BYTE for the ith destination.   The MESSAGE ID for the packet to be acknowledged
is retained.  The message type is set to 1.  The path between the originator node and the ith
destination is reversed.  All intermediate destinations are removed.  The path will contain one
originator, one destination, and the relayers.  The DES bit in the status bytes for all relayers is set
to 0, indicating they perform relay only.  No data is carried with an end-to-end acknowledgement
acknowledgment packet; just the intranet header.

I.5.  Examples. To illustrate Source Directed Relay procedures consider the sample network link
diagram in Figure I-1 and final spanningrouting tree in Figure I-2.  Table I-1 gives specific
addresses for the nodes labeled A, B, C, D, E, F, G and H.  To maintain consistency with other
sections of MIL-STD-188-220, the least significant bit (LSB) is presented to the left of the
figures in this appendix.

Figure I-1.  Link Diagram of a Sample Network.
FIGURE I-1.  Link diagram of a sample network.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-3

Figure I-2.  Final Spanning Tree for Node A.
FIGURE I-2.  Final routing tree for node A.

TABLE I-1.  Sample Node Addresses

Node LSB MSB Address
A x 1 1 1 1 0 0 0 15
B x 0 0 1 0 0 0 0 4
C x 1 0 1 0 0 0 0 5
D x 0 1 1 0 0 0 0 6
E x 1 1 1 0 0 0 0 7
F x 0 0 0 1 0 0 0 8
G x 1 0 0 1 0 0 0 9
H x 0 1 0 1 0 0 0 10



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-4

I.5.1.  EXAMPLE 1.  Assume that node A has a packet bound for node G alone.  Node A's
Sparse SpanningRouting Tree provides the following potential paths to Node G:  A-B-E-G,
A-C-E-G, A-C-F-G and A-D-F-G.  Assuming that all paths have the same quality and cost, any
path may be selected by Node A.  In this example, path A-B-E-G is selected.

Table I-1.  Sample Node Addresses

Node LSB MSB Address
A x 1 1 0 0 0 0 0 3
B x 0 0 1 0 0 0 0 4
C x 1 0 1 0 0 0 0 5
D x 0 1 1 0 0 0 0 6
E x 1 1 1 0 0 0 0 7
F x 0 0 0 1 0 0 0 8
G x 1 0 0 1 0 0 0 9
H x 0 1 0 1 0 0 0 10

The following values are assigned to the Intranet Header in example 1:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000
MESSAGE ID = 1
MAX_HOP_COUNT = 3 (Distance from node A to node G)
ORIGINATOR ADDRESS = 315 (node A)
STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 4 (node B)
STATUS BYTE 2 = 01010000 (DIS=2, REL=Yes, DES=No, ACK=No)
DESTINATION 2 = 7 (node E)
STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)
HEADER LENGTH = 12 octets

Figure I-3 shows the complete Intranet Header for example 1.  Note that the LSB in all
destination addresses is 0 except for the last destination address (node G).



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-5

LSB
1 2 3 4 5 6 7

MSB
VERSION NUMBER MESSAGE TYPE

0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH

0 0 1 1 0 0 0 0
TYPE OF SERVICE

0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER

1 0 0 0 0 0 0 0
MAX HOP COUNT SPARE

1 1 0 0 0 0 0 0
ORIGINATOR ADDRESS

0 1 1 01 01 0 0 0
DESTINATION/RELAY STATUS BYTE 1

1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1

0 0 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2

0 1 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 2

0 1 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 3

1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 3

1 1 0 0 1 0 0 0

FIGURE I-3. Example 1 intranet header.

I.5.2.  EXAMPLE 2.  Assume that node A has a packet bound for nodes G and H.  Node A's
Sparse Spanning Routing Tree provides the following potential paths to nodes G and H:  A-B-
E-G, A-C-E-G,  A-C-F-G, A-C-F-H, A-D-F-G, and A-D-F-H.  Of these potential paths, the most
economical choices are those that use node F for relaying: A-C-F-G, A-D-F-G, A-C-F-H, and A-
D-F-H.  Although paths A-B-E-G and A-C-E-G are viable paths to node G, they would unneces-
sarily increase processing at nodes B and E, and would increase the size of the Intranet Header in
this example.  In this example the selected paths are A-C-F-G and A-C-F-H.

The following values are assigned to the Intranet Header in example 2:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000
MESSAGE ID = 2
MAX_HOP_COUNT = 3 (Distance from node A to nodes G and H)
ORIGINATOR ADDRESS = 315 (node A)
STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 4 (node C)
STATUS BYTE 2 = 01010000 (DIS=2, REL=Yes, DES=No, ACK=No)
DESTINATION 2 = 8 (node F)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-6

STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)
STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 10 (node H)
HEADER LENGTH = 14 octets

Figure I-4 shows the complete Intranet Header for example 2.  Note that the LSB in all
destination addresses is 0 except for the last destination address (node H).

0
LSB

1 2 3 4 5 6 7
MSB

VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0

INTRANET HEADER LENGTH
0 1 1 1 0 0 0 0

TYPE OF SERVICE
0 0 0 0 0 0 0 0

MESSAGE IDENTIFICATION NUMBER
0 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 1 0 0 0 0 0 0

ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0

DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0

DESTINATION/RELAY ADDRESS 1
0 0 0 1 0 0 0 0

DESTINATION/RELAY STATUS BYTE 2
0 1 0 1 0 0 0 0

DESTINATION/RELAY ADDRESS 2
0 0 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 3
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 3
0 1 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 4
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 4
1 0 1 0 1 0 0 0

FIGURE I-4.  Example 2 intranet header.

I.5.3.  EXAMPLE 3.  In the third example, node A wishes to deliver a packet to nodes D, E, F, G
and H.  In this case node A again would select the most economical path to each destination,
taking into consideration the impacts on network traffic and Intranet header size.  Table I-2 lists
the potential and selected paths from node A to each of the intended destinations.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-7

A similar process would be used to select economical paths to relay nodes, such as node C.  The
shortest path to the most distant nodes G and H are reviewed to determine whether the relay
nodes C and F are also destinations.  Note that node F is both a destination and a relay while
node C is a relay node only.

Destination Node Potential Paths Selected Path
D A-D A-D
E A-B-E

A-C-E
A-C-E

F A-C-F
A-D-F

A-C-F

G A-B-E-G
A-C-E-G
A-C-F-G
A-D-F-G

A-C-F-G

H A-C-F-H
A-D-F-H

A-C-F-H

TABLE I-2.  Paths used in Example 3.

The following values are assigned to the Intranet Header in example 3:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000
MESSAGE ID = 3
MAX_HOP_COUNT = 3 (Distance from node A to nodes G and H)
ORIGINATOR ADDRESS = 315 (node A)
STATUS BYTE 1 = 10000010 (DIS=1, REL=No, DES=Yes, ACK=No)
DESTINATION 1 = 6 (node D)
STATUS BYTE 2 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 2 = 5 (node C)
STATUS BYTE 3 = 01000010 (DIS=2, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 7 (node E)
STATUS BYTE 4 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)
DESTINATION 4 = 8 (node F)
STATUS BYTE 5 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 5 = 9 (node G)
STATUS BYTE 6 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 6 = 10 (node H)
HEADER LENGTH = 18 octets

Figure I-5 shows the complete Intranet Header for example 3.  Note that the LSB in all
destination addresses is 0 except for the last destination address (node H).



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-8

0
LSB

1 2 3 4 5 6 7
MSB

VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0

INTRANET HEADER LENGTH
0 1 0 0 1 0 0 0

TYPE OF SERVICE
0 0 0 0 0 0 0 0

MESSAGE IDENTIFICATION NUMBER
1 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 1 0 0 0 0 0 0

ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0

DESTINATION/RELAY STATUS BYTE 1
1 0 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 1
0 0 1 1 0 0 0 0

DESTINATION/RELAY STATUS BYTE 2
1 0 0 1 0 0 0 0

DESTINATION/RELAY ADDRESS 2
0 1 0 1 0 0 0 0

DESTINATION/RELAY STATUS BYTE 3
0 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 3
0 1 1 1 0 0 0 0

DESTINATION/RELAY STATUS BYTE 4
0 1 0 1 0 0 1 0

DESTINATION/RELAY ADDRESS 4
0 0 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 5
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 5
0 1 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 6
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 6
1 0 1 0 1 0 0 0

FIGURE I-5.  Example 3 intranet header created by node A (originator)

I.5.4.  RELAY PROCESSING.  Although the separate examples 1,2,3 all have diverse paths,
they would all require the same number data link information frames for delivery (one).  The UI,
I, or DIA frame would be transmitted to each destination simultaneously.  Addressed
destinations would perform the required data link layer processing described in 5.3 and pass the
information field of the frame to the Intranet layer for further processing.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-9

The Intranet header is scanned for the node's data link layer address.  When found, the previous
octet - the Destination/Relay Status byte - is inspected.  If the Relay bit is not set and the
destination bit is set, the data portion following the Intranet header is passed to the next higher
protocol layer for further processing.  If the Relay bit is set, Relay processing is required.  If both
the Relay bit and the Destination bit are set, Relay processing is performed before the passing
data portion of the frame to the next higher protocol layer for further processing.  Relay
processing involves the following steps:

1.    Scan forward until the relayer node sees it' s own address.
 
2.    Scan toward the end of the header looking for all nodes whose DES bit is set and

whose distance is one hop greater than your own.  Terminate the scan when a
distance less than or equal to your own or the end of the header is found.  Save the
addresses.

 
3.    While scanning forward until a hop distance less than or equal to your own is

found, find all relay addresses that are one hop away from your address and save
these addresses.

 
4.    Remove all duplicate saved addresses and pass the remaining addresses to the

data link layer to form a multi-addressed information frame containing the
Intranet header and data.

The following sections discuss the relay processing at each of the downstream relayers in
Example 3.  There are two options when filling out the Intranet Header Address Field at the relay
nodes.  The relay nodes may copy the Address Field and place it into the relay packet intact or
they may delete the addresses which have no impact on forwarding or return of a network layer
acknowledgment.  If the implementor chooses to leave the address field intact, the address field
in Figure I-5 is used at every relayer.  If the implementor chooses to compress the address field
to save transmitted bytes, the following paragraphs dictate the method for compression.  There is
no interoperability problem regardless of which of these two methods are implemented.

I.5.4.1  RELAY PROCESSING AT NODE C.  Node C is a relay node, but not a destination
node.  Node C is responsible for relaying the information to nodes E F, G and H.  Node C
assigns the following values to the Intranet Header in example 3:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000
MESSAGE ID = 3
MAX_HOP_COUNT = 2 (Original MAX_HOP_COUNT - 1)
ORIGINATOR ADDRESS = 315 (node A)
STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, Des=No, ACK=No)
DESTINATION 1 = 5 (node C)
STATUS BYTE 2 = 01000010 (DIS=2, REL=No, DES=Yes, ACK=No)
DESTINATION 2 = 7 (node E)
STATUS BYTE 3 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-10

DESTINATION 3 = 8 (node F)
STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 9 (node G)
STATUS BYTE 5 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 5 = 10 (node H)
HEADER LENGTH = 16 octets

Figure I-6 shows the complete Intranet Header created by Node C.

I.5.4.2.  RELAY PROCESSING AT NODE F.  Node F is both a destination and a relayer with
relay responsibilities to nodes G and H.  Node F assigns the following values to the Intranet
Header in example 3:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000
MESSAGE ID = 3
MAX_HOP_COUNT = 1 (Received MAX_HOP_COUNT - 1)
ORIGINATOR ADDRESS = 315 (node A)
STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 5 (node C)
STATUS BYTE 2 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)
STATUS BYTE 2 = 8 (node F)
STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)
STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 10 (node H)
HEADER LENGTH = 14 octets

Figure I-7 shows the complete Intranet Header created by Node F.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-11

LSB
1 2 3 4 5 6 7

MSB
VERSION NUMBER MESSAGE TYPE

0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH

0 0 0 0 1 0 0 0
TYPE OF SERVICE

0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER

1 1 0 0 0 0 0 0
MAX HOP COUNT SPARE

0 1 0 0 0 0 0 0
ORIGINATOR ADDRESS

0 1 1 10 10 0 0 0
DESTINATION/RELAY STATUS BYTE 1

1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1

0 1 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2

0 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 2

0 1 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 3

0 1 0 1 0 0 1 0
DESTINATION/RELAY ADDRESS 3

0 0 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 4

1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 4

0 1 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 5

1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 5

1 0 1 0 1 0 0 0

FIGURE I-6. Example 3 intranet header for node C (relay node)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

I-12

0
LSB

1 2 3 4 5 6 7
MSB

VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0

INTRANET HEADER LENGTH
0 1 0 1 0 0 0 0

TYPE OF SERVICE
0 0 0 0 0 0 0 0

MESSAGE IDENTIFICATION NUMBER
1 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 0 0 0 0 0 0 0

ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0

DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0

DESTINATION/RELAY ADDRESS 1
0 1 0 1 0 0 0 0

DESTINATION/RELAY STATUS BYTE 2
0 1 0 1 0 0 1 0

DESTINATION/RELAY ADDRESS 2
0 0 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 3
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 3
0 1 0 0 1 0 0 0

DESTINATION/RELAY STATUS BYTE 4
1 1 0 0 0 0 1 0

DESTINATION/RELAY ADDRESS 4
1 0 1 0 1 0 0 0

FIGURE I-7.  Example 3 intranet header created by node F (relay and destination node)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

APPENI DIX J

ROBUST COMMUNICATIONS PROTOCOL

J1. J.1.  General.

J.1.1.  Scope.  This appendix Appendix describes the interoperability and technical
requirements for the robust communications protocol for DMTD subsystems.  This
appendix and interfacing C4I systems (DTEs).  This Appendix applies only to HAVEQUICK
II compatible systems that require interoperability with radios that do not have data buffering or
synchronization capability.

J.1.2   Application.  This appendix is not Appendix is a mandatory part of this MIL-
STD.MIL-STD-188-220.  The information contained herein is intended for guidance
only. compliance.

J2. J.2.  Applicable Documents.  This section is not applicable to this appendix. Appendix.

J3. J.3.  Introduction.  This physical layer protocol provides the additional processing to aid the
transfer of secure and non-secure digital data when concatenated with the link processing of the
MIL-STD-188-220 protocol.  The additional processing of this protocol allows for a higher level
protocol with an error correcting capability equal to rate 1/2 Golay to transfer a burst of data
containing up to 67,200 data symbols with better than 90% probability of success in a single
transmission, this being over an active ARC-164HAVEQUICK II compatible link with a
random bit error rate of 0.1 or less.  The second goal of this physical protocol is for the required
performance to be achieved entirely in software using current systems with modest processing
capability.

J.3.1 Physical Protocol Components.  Three individually selectable processes are used to meet
the performance requirement. The first is the application of rate 1/3 convolutional coding to
combat high random bit error rates.  The second is a provision for data scrambling.  Scrambling
at the physical layer is implemented simply as the multiplication of the transmit data with a
pseudo random bit pattern. The third is a packetizing scheme that allows for the re-transmission
of the data that was lost due to an ARC-164HAVEQUICK II compatible frequency hop.  The
re-transmission is performed, and data recovered within the data burst and the data interruption is
transparent to the higher level protocol. This packetizing scheme has been dubbed the Multi-
Dwell protocol because it was formulated to allow a message to be transmitted over multiple
ARC-164HAVEQUICK II compatible hop dwells.

J.3.2 Optional rate 1/3 convolutional coding.  The transmitting convolutional encoder
generates three output bits for each input information bit. Figure J-1 shows an example of the
encoding process for a constraint length (K) of 3.  The encoder consists of a shift register equal
in length to the constraint length.  The data to encode is shifted from left to right one bit at a



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

time.  After each shift, three output bits are generated using the G1, G2, and G3 polynomials.
The three encoded output bits are generated in the G1, G2, G3 order.  The G2 output shall be
inverted to provide some data scrambling capability. The convolutional encoding shift register is
initialized to a state of zero when a transmission is requested.  The first output bits are generated
when the shift register contains the first upper layer bit to transmit, followed by all zeros.  Upon
detection of the robust synchronization pattern, the Viterbi decoder is initialized to make use of
the knowledge of the initial encoder shift register state.

Figure FIGURE J-1.  Convolutional encoder with inverted G2 K=3 .

Table J-1 lists the generator polynomials used for the three specified constraint lengths.  The
most significant bits of the octal representation of each polynomial are used for each polynomial.

Table TABLE J-1.  Convolutional Coding Generator Polynomials
(Octal) . coding generator polynomials (octal).

Figure J-2 shows the relative error correcting capability of rate 1/3 convolutional coding in a
random error environment using the Viterbi decoding algorithm with hard decisions.  The
performance was achieved using a trace back buffer length of 16, 32, and 64 for constraint
lengths 3, 5, and 7 respectively.  If the demodulator and decoder are components of the same

+

+
+

G1 (101)

G2 (111)

G3 (111)

1

2

3
Output

Input

Constraint Length G1 G2 G3
3 5 7 7
5 52 66 76
7 554 624 764



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

subsystem, soft decision information from the demodulator can be used to further enhance the
performance.

RATE 1/3 VITERBI DECODE HARD DECISIONS

0.001

0.01

0.1

1

CHANNEL BER

  K=3    

   K=5     

  K=7

FIGURE J-2.  Rate 1/3 convolutional coding performance
       for constraint lengths 3, 5, and 7.

J.3.3  Optional data scrambling.  Physical layer data scrambling shall use the pseudo random bit
generator specified in CCITT V.33 Annex A.  The shift register shall be initialized to all zeros
before the first bit of data is scrambled on transmission.  On data reception, the descrambler shift
register shall be initialized to zero before the first received data bit is descrambled.  Figure J-3
shows the structure of the data scrambler and descrambler.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

FIGURE J-3.  Data scrambler structure.

J.3.4  Optional robust multi-dwell.

J.3.4.1  Multi-dwell packet format.  When the ARC-164HAVEQUICK II compatible radio is in
active mode, multi-dwell packetizing shall be enabled. The multi-dwell packetizing described in
this appendix assumes a physical level bit rate of 16 kbps. The format of each multi-dwell packet
is shown in Figure J-4.  Each packet consists of a start of packet (SOP) pattern and a segment
counter followed by 6, 11 or 13 64-bit data segments.

J.3.4.2  Multi-dwell SOP field.  The SOP pattern is a 32 or 64 bit long 32-bit (Figure J-5)
or 64-bit (Figure J-6) pattern used for multi-dwell packet detection.  The maximum number of
bits in error should be set to match the bit error rate environment.  For normal operation, it is
recommended that the maximum number of bits in error be set to 913 for a 64-bit pattern, and to
3 for a 32-bit pattern.  The length of the SOP pattern shall be determined by bits two three and
four of the robust frame format.

Figure J-3.  Data Scrambler Structure .



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

FIGURE J-4.  Multi-dwell packet.

LSB MSB
10100100111000101111001010000110100100000111111010101
10011011101

Figure FIGURE J-5.  Multi-dwell 64-bit SOP pattern .

LSB MSB
00000011100100001001001110101110

Figure FIGURE J-6.  Multi-dwell 32-bit SOP pattern .

J.3.4.3  Multi-dwell segment count field.  The segment counter is a modulo 64 count of the first
segment in the packet.  The six required bits shall be encoded as 1, 3, or 5 BCH (15,7)
codewords depending on bits 2, 3 and 4 of the robust frame format.  The six-bit segment counter
shall occupy the 6 least significant bits of the seven-bit BCH data field.  The most significant bit
of the data field can optionally shall be used as an end of frame flag which, when set,
indicates that data transmission is complete.  A multi-dwell packet marked with an end of frame
flag shall contain only the SOP pattern and the segment count field used to make the segment
number of the last non-fill data segment transmitted.

J.3.4.4  Multi-dwell data segments.  Each multi-dwell packet shall contain 6, 11 or 1713
consecutive 64-bit data segments.  Unless a channel interruption is detected during the
transmission of the packet, each data segment shall contain the next 64 bits supplied by the data
link layer for transmission.  The last multi-dwell packet shall contain pad bits and segments as
necessary to complete the packet.  The transmitted pad data shall be an alternating one, zero
sequence.

32/64 BIT

SOP

SEG
N

SEG
N+1

SEG
N+2

SEGMENT

(N+SEG_CNT-1) .    .    .
15 TO 75 BIT

SEGMENT COUNTER

†BCH (15,7)
COPY 4

*BCH (15,7)
COPY 3

*BCH (15,7)
COPY 2

 BCH (15,7)
COPY 1

†BCH (15,7)
COPY 5

* - 2:3 and 3:5 Majority Voting

† - 3:5 Majority Voting Only



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

J.3.4.5  Multi-dwell hop detection.  The physical layer shall have the means of detecting or
predicting communications link outages.

J.3.4.6  Multi-dwell transmit processing.  Data received from the data link layer for transmission
shall be broken into 64 bit segments for transmission.  The data shall be packetized as stated in
J.3.4.1.  Packets shall be transmitted consecutively with the packet count subfield containing the
count, modulo 64, of the first segment in the packet until a communications link outage is
detected, at which time, the remainder of the data segments in the currently transmitted packet
shall be filled with an alternating one/zero pattern.  If the configurable hop recovery time (HRT),
is greater than the time remaining to complete the transmission of the current packet, the
alternating one/zero sequence shall be extended to the end of the HRT period.  If a hop is
detected during the multi-dwell packet synchronization field, or during the transmission of the
first two segments, the entire packet shall be retransmitted.  The first multi-dwell packet
transmitted in a frame shall not contain the multi-dwell synchronization field.  It is assumed that
the segment count of the first packet is zero.

J.3.4.6.1  Hop data recovery time period.  A configurable variable called the hop recovery time
(HRT) shall be used to determine if the fill data transmitted following a hop must be extended to
ensure that the following multi-dwell synchronization field can be received.  The HRT is defined
as the time period from the beginning of the transmitting radio frequency synthesizer frequency
hop to the time that the bit synchronizer connected to the receiving radio can reliably demodulate
data.  Because different hop detection/ prediction methods flag the hop at different times relative
to the beginning of the transmitting radio frequency synthesizer frequency slew, the configured
HRT shall be internally adjusted to insure that different DMTDsDTEs in a network can all use the
same configurable HRT.

J.3.4.6.2  Data transmitted after a hop.  The multi-dwell packet transmitted directly following a
communications link outage shall retransmit data starting with the 64-bit segment preceding the
segment that was being transmitted when the hop was detected.

J.3.4.6.3  Termination of transmission.  After the final packet of the frame is transmitted, without
a hop detected during a data segment containing actual data (not fill data), data transmission shall
be terminated.  To prevent receive delays caused by the receiver not being able to determine that
the last data segment has been received, an optional truncated multi-dwell packet can shall be
sent with the end of frame flag set.  The segment count associated with the end of frame flag
shall mark the last first non-fill data segment transmitted.

J.3.4.7  Multi-dwell receive processing.  If the multi-dwell flag was set in the robust
synchronization field, the receiver shall buffer the multi-dwell data packet.  The segment count
for the first multi-dwell packet in a frame shall be assumed to be 0.  After the last packet bit is
received, the receiver shall open the SOP correlator window.  When the SOP pattern is
recognized, the segment count is decoded using the combination of majority and BCH decoding
specified in the robust synchronization field.  After each new segment count is decoded, the
buffered data for data segments lower in count than the new segment count are passed on to the
next higher layer as received bits.  The segments of the newly received packet are then buffered
and held until it is verified that the buffered segments will not be re-transmitted.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

J.3.4.7.1  Receive end of frame detection.  The data remaining in the multi-dwell receive data
buffer shall be provided to the higher level protocol when an end of frame condition is detected.
The end of frame condition may be determined by the data demodulator, the optional multi-dwell
end of frame flag, or by a message from the higher level protocol indicating that message
reception is complete.

J.3.4.7.2  Optional soft decision information.  When there is a very high link BER, a SOP pattern
may not be recognized or the segment count may not be correctable.  If fewer than three
consecutive segment counts cannot be corrected the correct number of bits shall be supplied to
the upper level protocol as to not cause a bit slip, and consequently, the loss of the remaining
data in the frame.  If convolutional coding is used with multi-dwell, it is suggested that soft
decision information is supplied indicating the low quality of the received data resulting from a
missed SOP pattern or an unrecoverable segment count.

J.3.4.8  Multi-dwell majority logic overhead choice.  The choice of the amount of multi-dwell
majority voting (MV) overhead is dependent on the expected link BER.  Table J-2 gives an
estimate of the maximum random BER supported for a 90% probability of passing a single frame
of length 1536 bits, 7680 bits, and 67,200 bits with no errors introduced due to multi-dwell
processing.

Table TABLE J-2.  Maximum Supported supported BER.

J.3.4.9  Multi-dwell overhead.  The multi-dwell protocol introduces an overhead that shall be
considered in the network timing calculations.  The overhead is a function of the radio hop rate,
the multi-dwell segment count majority voting choice, and the message length.  Table J-3 gives
the equation to calculate the actual worst case realized data rate for each hop rate and majority
logic combination. The numbers in table J-3 were run with a hop recovery time of 15.625 ms, a
maximum radio timing drift over a 1/2 hour period, an instantaneous data rate of 16000
bits/second.  The actual efficiency will depend upon the exact implementation, therefore the
numbers in Table J-3 should be used as a guide only.  The six-segment multi-dwell packet shall
be used for protocol acknowledgments and other single TDC block messages.  The calculated
realized data rate shall be used for the bit rate of all data encapsulated by the multi-dwell
protocol.

Table TABLE J-3.  Multi-dwell overhead.

Segment Count MV 1536 7680 67,200
1 out of 1 0.055 0.03 0.016
2 out of 3 0.14 0.11 0.07
3 out of 5 0.2 0.14 0.12



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

R = the instantaneous data rate

L = the number of bits to be transmitted

J.3.4.9.1  Terminals lacking hop detection.  The ALL case in Table J-3 is to show the efficiency
of the multi-dwell protocol in systems where the hop cannot be detected due to hardware or
software limitations.  Since there is no hop timing information available, the DMTDDTE shall
assume that the radio will hop at every possible time slot.  In these systems, it is assumed that
timing synchronization with the radio will be made by the detection of the falling edge of the
radio delayed push to talk (DPTT) signal provided by the ARC-164HAVEQUICK II compatible
radio.

J.3.5  Robust Communications Protocol Network Timing.  The use of the robust communications
protocol requiresthe  modification to some of the Appendix C type 1 network timing equations.
The bit rate, transmit delays, and receive processing delays are modified by the robust protocol.
For purposes of robust network timing, two system bit rates are defined.  The first is the channel
bit rate which is represented as nc.  The second is the data link bit rate which is represented as nl.
As an example, if rate 1/3 convolutional coding is applied at the physical layer and the channel
bit rate is 16 khz, kbps, the link bit rate would be 5.33 khz. kbps.  In this example, an external
cryptographic device would transmit the MI field at nc Hz and an internal cryptographic device
would transmit the MI field at nl Hz.  The multi-dwell reduction of nl is not deterministic but is
bounded.  The average multi-dwell nl is a function of the multi-dwell packet format, the timing
of the DMTDDTE transmit request in relation to the radio TRANSEC timing, and the number of
bits to be transmitted.  The following paragraphs Type 1 network access control
subfunctions are specified in Appendix C:

 
network busy sensing
 
response hold delay (RHD)
 
timeout period  (TP)
 

HOP Multi-dwell overhead calculation

RATE MV 1:1, 11 segments MV 2:3, 11 segments MV 3:5, 13 segments MV 3:5, 6 segments
RATE MV 1:1, 11 segments MV 2:3, 13 segments MV 3:5, 13 segments MV 3:5, 6 segments

0 R/((0.3*10(-L*.00003))+1.06) R/((0.3*10(-L*.00003))+1.16) R/((0.2*10(-L*.00003))+1.17) R/((0.1*10(-L*.00003))+1.36)

1 R/((0.6*10(-L*.00003))+1.10) R/((0.6*10(-L*.00003))+1.21) R/((.55*10(-L*.00003))+1.23) R/((0.3*10(-L*.00003))+1.40)

2 R/((0.5*10(-L*.00003))+1.15) R/((0.5*10(-L*.00003))+1.27) R/((0.7*10(-L*.00003))+1.30) R/((0.4*10(-L*.00005))+1.48)

3 R/((0.5*10(-L*.00003))+1.20) R/((0.4*10(-L*.00002))+1.36) R/((0.8*10(-L*.00003))+1.29) R/((0.2*10(-L*.00003))+1.56)

4 R/(1.45) R/(1.51) R/((0.7*10(-L*.00002))+1.46) R/((.07*10(-L*.00002))+1.85)

ALL R/(1.72) R/(1.72) R/(1.96) R/(2.27)



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-��

network access delay (NAD)

address the The following subparagraphs address required modifications tothe Type 1
network timing equations associated with these subfunctions as a result of using the robust
communications protocol.

J3.5.1  Net busy sensing function . J.3.5.1  Net busy sensing.  Because net busy
sensing is performed at the physical level, there are no modifications to the net busy sensing
timing or methods when using the robust communications protocol.

Net_Busy_Dete ct_Time = (KT + C + B + ST)

J3.5.1.1  Keytime delay (KT) .  The keytime delay is not effected
by robust processing.  However, when using a HAVEQUICK II radio,
the actual keytime varies from transmission to transmission.

J3.5.1.1.1  Application guidance H AVEQUICK II link .  The
HAVEQUICK II TRANSEC timing and the DMTD network timing are not
synchronized.  To avoid the loss of critical data, such as the
cryptographic synchronization and or the protocol SOM patterns,
the DMTD transmission timing must be synch ronized to the
frequency hops.  Generally, the radio provides a delayed push-to-
talk (DPTT) signal which marks the beginning of a hop dwell with
a guaranteed minimum duration.  This minimum dwell period is
sufficient to carry the synchronization field of a n external
cryptographic device or the robust frame synchronization field
when an internal cryptographic device is used.  The time from the
DMTD transmit request to the assertion of the DPTT signal is, by
definition, the key delay.  For the purposes of net work timing,
the maximum delay between the DMTD transmit request and DPTT must
be used as the key delay.

J3.5.1.2  CRYPTO device preamble transmission time (C) .  The
crypto preamble transmission time is not effected by robust
processing.  Typically, thi s timing component is only applicable
when using an external crypto device since the DMTD has no
knowledge of data reception until the receiving crypto has
successfully received the crypto preamble.

J3.5.1.3  Net busy detection time (B) .  The physical lev el bit
synchronizing and SOM detection functions perform the detection
of active data.  There is no difference in the timing of this
function when the robust SOM pattern precedes the protocol
message synchronization pattern.

J3.5.1.4  Satellite interface delay (ST) .  The satellite
interface delay is not effected by robust processing.

J.3.5.2  Response hold delay.  The additional transmission time required for the robust
synchronization field and nl bit rate reductions add new terms to impact the response



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

transmission time parameter, (S), contained in the response hold delay timing equations.
equation, RHD0.  Also additional receive processing delays impact the internal DMTD timing
calculations. DTE timing calculations.  The RHD0 is calculated as follows:

RHDO = EPRE + PHASING + S + ELAG + TURN + TOL
RHDo = KT + E + T + S

J3.5.2.1  Keytime delay (KT) .  The usage of keytime delay for the
calculation of RHD is not effected by the robust protocol.

J3.5.2.1.1  Application guidance HAVEQUICK II link .  Because th e
keytime delay varies from transmission to transmission, the
actual key delay will typically be less than the configured key
delay.  Also, the DMTD cannot delay the transmission of
synchronization data until the end of the configured keytime
delay period and maintain data synchronization with the radio
hops.  As a result, the transmitting DMTD cannot simply calculate
the time from the DMTD transmit request to the transmission of
the last message bit.  A logical signal from the physical layer
to the data li nk layer indicating the message completion time is
required to insure that the transmitter and receiver(s) use the
same reference point for the calculation of RHD and TP.

J3.5.2.2  Transmission processing delays (E) .  The equipment
turnaround time and car rier drop-out time component of E are not
changed by the robust protocol.  The HAVEQUICK II radio
introduces additional equipment turnaround time ET 1 and ET 2 as
shown in Figure J-7.  The transmit delay from the host to the
transmission of data which is the  host processor to DMTD
interface delay, is not changed by the robust protocol.  The
additional transmission time that is required by the
cryptographic function is not changed for an external crypto.
For an internal crypto, the MI field will now be transm itted at
the lower n l .  The satellite delay time is not changed by the
robust protocol.

J3.5.2.3 J.3.5.2.1  Response transmission time (S). The response transmission time is changed
by the robust protocol.  A type 1 response Type 1 Response PDU from the data link layer
consists of the 64 bit 64-bit message synchronization field, an the 75-bit robust frame format,
an optional embedded COMSEC MI field, the 168-bit word count and Transmission optional
imbedded MI field, the 168 bit word count and transmission
header Header TDC block, and 384, 160, 168, or 80 bits of acknowledgment data depending
on the selectable use of EDC and TDC. The sum of these 64-bit message synchronization
field and the 75-bit robust frame format are transmitted at the channel bit rate (nc) The remaining
components are transmitted at the link data rate (nl).

J.3.5.2.1.1  Multi-dwell Response. Where multi-dwell is used to send the original message at a
channel bit rate, nc, of 16 Kbps, all responses, i.e. Type 1 acknowledgments,  In all
respons e transmission cases,  except for a secure external crypto transmission,
transmission with rate 1/3 convolution coding enabled, the



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

response is are short enough that a multi-dwell transmission is not required.  A multi-dwell
transmission is required when using an external cryptoand with the selection of
rate 1/3 convolutional coding  because the data may be interrupted by a frequency
hop. Table J-4 gives the maximum number of bits that will be transmitted at the channel bit rate
(nc) for the link data sizes and multi-dwell SOP majority logic choices.  These numbers are for
the HOP ALL case, which is the worst case, and for the highest operational hop rate, hop rate 3.
The 139 robust protocol header bits are included in Table J-4. The numbers in Table J-4 do not
include the “wasted time” shown in Figure J-7.

J3.5.2.4  Tolerance (T) .  There is no required change in the
tolerance calculation for the robust protocol.

J3.5.2. 5  Individual response hold delay (RHD i ) .  The RHDi
equation does not require modification  for robust protocol
implementation.

Table TABLE J-4. Multi-dwell external crypto response transmission time
                 HRT= 15.6 ms, mode 3, (MV3:5, 6 segments/packet)

response overhead .

LINK
BITS

FEC 1/3
Hop Rate 3

FEC 1/3
Hop All

No EC
Hop Rate 3

No FEC
Hop All

312 2139/nc 3139/nc 662/nc 662/nc

392 2139/nc 4143/nc 1185/nc 1185/nc
616 3139/nc 5189/nc 1185/nc 1708/nc

LINK multi-dwell external crypto response transmission time,
HRT = 15.6 ms, 6 segments/packet

BITS MV 1:1
FEC rate 1/3

MV 2:3
FEC rate 1/3

MV 3:5
FEC rate 1/3

HOP RATE
3

HOP ALL HOP RATE
3

HOP ALL HOP RATE
3

HOP ALL

312 2047/n c 2047/n c 2109/n c 2604/n c 2139/n c 3139/n c

392 2047/n c 2478/n c 2109/n c 2604/n c 2139/n c 4143/n c

616 3047/n c 3478/n c 3109/n c 4602/n c 3139/n c 5189/n c

NOTES:         Table J-4 is optimized for the AN/ARC-164.
                        Robust Mode 3 is used for response PDUs.  The choices are FEC or no FEC.
                        LINK BITS = the number of bits sent to the physical layer in a response PDU.
                        If Delay PTT is not supported by all radios in the network, then only columns

marked "Hop All" apply.
                        Columns marked "Hop All" are required.  Columns marked "Hope Rate 3" are

optional.

J.3.5.2.1.2  Non Multi-dwell Response.  Where an external crypto device is not used and nc is 16
Kbps, the long dwell time will contain the entire response.  Where an external crypto device is



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

used, convolutional encoding is not used and the nc is 16 Kbps, the crypto preamble will be
contained within the long dwell time and the response will be contained within the first
minimum dwell period following the long dwell time.

J3.5.2.6 J.3.5.2.2  Response transmission example. Figure J-7 shows an example of the
timing of an acknowledgment when an external cryptographic device is used with the
HAVEQUICK II radio.The keytime delay is shown as th e periodbetween
the assertion of the DMTD transmit request and the radio DPTT
signal.  The falling edge of the DPTT signal marks the beginning of a long hop dwell that is
long enough to contain the crypto preamble time.

If an external crypto device was not used, this long dwell time would contain the entire
acknowledgment.  After the crypto has finished transmitting the MI field, the transmitting
DMTDDTE begins to supply data for transmission.Depending on the length of the
COMSEC bit sync field, there ma y be time to transmit the
acknowledgment or at least the robust synchronization field on
the long dwell.  Typically, the COMSEC bit synchronization time is not very accurate
and may be long enough to push the MI field to the end of the guaranteed long dwell time.  For
this reason, the DMTD typically waits DTE shall wait to start data transmission on the
first hop dwell following the long guaranteed dwell.  The end of the guaranteed hop dwell is
marked by the possible hop label.  The first bit of the robust SOM pattern is transmitted after the
configured hop recovery time (HRT).  During the transmission of the response, one or more hops
may occur which will vary the transmission time of the acknowledgment.  When the response
transmission is complete, the DMTDDTE de-asserts the transmit request signal.  The radio will
de- assert DPTT after a variable delay (ET1) at a time synchronized with the hop sequence.
After DPTT is de-asserted, the crypto transmits the postamble so that a hop
will not occur during radio RF output remains active and a radio hop will not occur.
This allows for the transmission of the crypto postamble. The radio RF output remains active for
longer that than is required for the transmission of the crypto postamble, which is shown as the
ET2 time period in Figure J-7.  For HAVEQUICK II radios, ET1, crypto postamble PLUS ET2

equals the transmitter turnaround time, (TTURN = ET1  + ET2) , as defined in Appendix C.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

C O M S E C
BIT  SYNC

C O M S E C
FRAME SYNC

C O M S E C
MI

ENCRYPTED FILL
DATA

E N C R Y P T E D
R E S P O N S E

C O M S E C
POSTAMBLE

ENCRYP-
T E D

ZEROS/
O N E S

RF

ACTIVE

C L O C K  A C T I V E

FILL  DATA A C K N O W L E D G E M E N T
DATA

A C T U A L
K E Y T I M E
D E L A Y

H O P  S Y N C H R O N I Z A T I O N
T I M I N G  R E F E R E N C E

P O S S I B L E
H O P

C H A N N E L  H O P
R E C O V E R Y  T I M E

ET1 ET2

D M T D  T R A N S M I T
R E Q U E S T

R A D I O  D P T T
S I G N A L

C H A N N E L
T R A N S M I T  D A T A

P O S S I B L E
F R E Q U E N C Y  H O P

C R Y P T O  T O  D M T D
T R A N S M I T  C L O C K

D M T D  T R A N S M I T
D A T A

C
C R Y P T O  P R E A M B L E  T I M E

W A I S T E D
TIME

· ·NOTE:  T IME PERIODS
A R E  N O T  T O  S C A L E

ET1 +  ET2 A D D I T I O N A L  H A V E Q U I C K
T U R N  A R R O U N D  T I M E

Figure FIGURE J-7.  HAVEQUICK II External Crypto Acknowledgment
Tra nsmission . external crypto acknowledgment transmission.

J3.5.2.7 J.3.5.2.3  Estimation of multi-dwell nl.  Figure J-8 shows an example of the nl data
rate for a multi-dwell transmission with a channel data rate of 16 kb/s. kbps.  This is the worst
case data rate reduction which would be experienced with rate 1/3 convolutional coding, a 64 bit
SOP pattern length, and 3 out of 5 majority logic decoding of the segment count field.  The data
rate shown Figure J-8 is the number of link bits to transmit divided by the number of channel bits
transmitted times the nc.  Since rate 1/3 convolutional encoding is used in this example, the
maximum link data rate achievable would be 5.33 khz. kbps.  For short messages, the radio hop
timing at the beginning of the transmission has a significant impact on the transmission
efficiency.  This example uses 13 segments per packet which is the recommended segment per
packet count for  long transmissions using 3 out of 5 majority logic.  This figure and the



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

equations given in Table J-3 are given as an aid  for network throughput estimation and should
not be used for network timing. The bit rate estimating equation used in Figure J-3 is:

link rate = nc / (0.5*10(-link bits * .00003) + 1.301)

Data Link to Physical Layer bit rate 3/5 MV, Multi-Dwell hop rate 3, with 
rate 1/3 convolutional coding. The equation is 0.5 * 10(-L*.00003)+ 1.301

3000

3200

3400

3600

3800

4000

4200

4400

4600

0 50 100 150 200

Link Message Size in 384 bit (TDC blocks)

lin
k 

bi
t r

at
e

max rate

avg rate

min rate

equation

Figure FIGURE J-8.  Link Data Rate as a Function of Message Size.

J3.5.2.8 J.3.5.2.4  Receive Processing Delays.  In order to calculate the reference point for the
RHD and TP timers, the receiving DMTDDTE must know the time of arrival of the last bit of the
transmission.  In order to do this, the data link layer normally determines the last bit of the
transmission after decoding the word count and tags the arrival of the last data bit from the
physical layer.  The physical layer receive delays are dependent on the DMTDDTE hardware and
software implementation.  The two delay components are processing delays and data pipeline
delays.  The processing delays are independent of the received data rate and the pipeline delays
are dependent on the data rate.  If the receive data rate is known, the data link layer can calculate
the time of arrival of the last bit of the message by subtracting off the processing and pipeline
delays.  If the received data rate is not known, it is impossible to convert a pipeline delay from
bits to seconds.  The data rate of all non-multi-dwell transmissions is known to be either nc or
nc/3 dependent on the use of rate 1/3 convolutional coding.  The received data rate of a multi-
dwell transmission is not known.  Foror  this reason, when a multi-dwell transmission is
received, the physical layer must tag the time of arrival of the final multi-dwell bit. The physical
layer can determine the time of arrival of the last bit by using the end of frame flag which is the
most significant bit in the final multi-dwell segment count field.  A logical signal from the
physical layer to the data link layer indicating the message completion time is required to insure
that the transmitter and receiver(s) use the same reference point for the calculation of RHD and
TP.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

-���

The trace back buffer length of the Viterbi decoder introduces a known pipeline delay in the
received data.  The length of the trace back buffer is an implementation choice which is
dependent on the Viterbi decoder architecture. Pipeline delay is the time needed to flush the trace
back buffer.

J.3.5.3  Timeout period (TP).  The timeout period is composed of terms that have
already been defined. derived from the following equations as described in Appendix
C:

                                    TP = (j  x  RHD0) + Maximum(DTEACK, TURN)
                                    TP = Maximum(DTEPROC, TURN)
                                    TP = (15  x  RHD0) + TOL + TURN

Modifications to the timeout period are result of changes to RHD0 and DTE receive processing
delays, which have been addressed in paragraphs J.3.5.2 and its subparagraphs.

J.3.5.4  Network access delay (NAD).  There are no modifications to the network timing
equations associated network access delay.  The network access delay is always an integer
number times the Net_Busy_Detect_Time which has previously been
defined. which, as previously discussed, has not been modified.

J.3.6  Application guidance for the HAVEQUICK II link.

J.3.6.1  Frequency Hop Synchronization.  The HAVEQUICK II TRANSEC timing and the DTE
network timing are not synchronized.  To avoid the loss of critical data, such as the
cryptographic synchronization and/or the protocol SOM patterns, the DTE transmission timing
must be synchronized to the frequency hops.  The radio should provide a DPTT signal which
marks the beginning of a hop dwell with a guaranteed minimum duration.  This minimum dwell
period is sufficient to carry the synchronization field of an external cryptographic device or the
robust frame synchronization field when an internal cryptographic device is used.

J3.6 J.3.7  Summary.  The physical layer robust protocol introduces additional transmit and
receive delays due to the robust header and the convolutional decoding pipeline delays.  Multi-
dwell packetizing introduces a data rate reduction which varies widely for short transmissions.
The HAVEQUICK II radio introduces variable delays in the keytime delay and the equipment
turn-around time.  To maintain network timing using the type 1 timing equations, the net busy
sense timing and the response transmission time must be a known constant.  In most cases, the
response can be transmitted without using the multi-dwell packetizing algorithm.  When the
multi-dwell dwell packetizing algorithm must be used to transmit a response, the worst case
time to complete the transmission is used in the response transmission time component of the
term ETURN in RHD.  The message transmission time is variable and is only required to be
known at the end of the transmission.  Two additional physical to data link signals are required to
mark the time of the last transmitted bit for transmission, and the time of the last received bit for
a reception.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

K-1

APPENDIX K

BOSE - CHAUDHARI - HOCQUENGHEM (15, 7) CODING ALGORITHM

K.1.  General.

K.1.1  Scope.  This appendix describes a linear block cyclic code capable of correcting any
combination of two or fewer errors in a block of 15 bits.

K.1.2  Application.  This appendix is a conditionally mandatory part of MIL-STD-188-220.  It is
mandatory for implementing Robust Frame Synchronization with Asynchronous mode operation
(described in 5.2.1.2.1).the Robust Communications Protocol described in Appendix J.

K.2.  Applicable documents.  This section is not applicable to this appendix.

K.3.  BCH (15,7) code.  The BCH (15,7) code is a linear, block, cyclic, BCH code capable of
correcting any combination of two or fewer errors in a block of 15 bits.  The generator
polynomial for this code is

g(x) = 1 + X4 + X6  + X7 + X8

where g(x) is a factor of X15 + 1

K.3.1  Hardware encoding.  BCH (15, 7) encoding can be performed with an 8 stage feedback
shift register with feedback connections selected according to the coefficients of g(x).  A shift
register corresponding to the coefficients of g(x) is shown in Figure K-1.

FigureFIGURE K-1.  Shift register encoder for the BCH (15, 7) code.

Figure K-2 illustrates its operation by showing the encoding of the information vector (1000010)
to form the code vector (10100101 | 01000010), where the parity check sequence is shown
before the partition and the information sequence after.  The information sequence with eight
zeros after it (place holders for the parity bits to be calculated) is shifted into the register initially
(it is really a fifteen bit shift register but only the last eight positions correspond to the
coefficients of g(x) and contain feedback connections).  The operation of the shift register



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

K-2

consists of seven rounds of shift, feedback, and sum operations.  The parity portion of the code
vector can then be read out of the shift register as shown.

FIGURE K-2.  Encoding example.

K.3.2  Hardware/Software Decoding.  Because of its special structure (it is completely
orthogonalizable in one step), the BCH (15,7) code can be decoded very efficiently with a
majority logic scheme which can be directly implemented in software or hardware.  It is most
easily described in terms of the shift register implementation shown in Figure K-3.  With gate 2
open and gate 1 closed, the received block is read into the shift register.  the output of the four
modulo 2 summers is sampled by the majority gate and processed as follows: if a clear majority
of the inputs are ones (three or more) then the output is one, otherwise (if two or fewer inputs are
ones) the output is zero.  This output is used to correct the last bit of the shift register.  The



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

K-3

corrected bit is output to the receiver and feedback through gate 2 as the register is right shifted.
The process is now repeated thirteen times until the last bit is corrected.

FIGURE K-3.  BCH (15, 7) majority logic decoding.

K.3.3  Software encoding.  The BCH (15,7) code is most efficiently encoded in systematic form
from the generator matrix shown in Figure K-4.



MIL-STD-188-220B:  20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

K-4

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0

1 1 0 0 1 1 1 0 0 1 0 0 0 0 0

0 1 1 0 0 1 1 1 0 0 1 0 0 0 0

G = 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0

0 1 0 1 1 1 0 0 0 0 0 0 1 0 0

0 0 1 0 1 1 1 0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 1 0 0 0 0 0 0 1

Parity Identity

FigureFIGURE K-4.  BCH (15, 7) generator matrix.



MIL-STD-188-220B:  20 January 1998

CONCLUDING MATERIAL

Custodians: Preparing Activity:

Army - CR DISA - DC
Navy - EC
Air Force - 90

Review activities: Agent:

Army - AM, SC, PT N/A
Navy - MC, NC, TD
Air Force - 02, 13, 17, 19, (Project TCSS - 2200)
  29, 89, 90, 93
DLA - DH
NSA - NS
ECAC - --
DMA - MP
DOT - OST
DIA - DIA

User Activities: International Interest:

Army - AC, MI NATO
Navy - OM
Air Force - 11, 18



STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1.  The preparing activity must complete blocks 1,2, 3, and 8.  In block 1, both the document number and
      revision letter should be given.
2.  The submitter of this form must complete blocks 4, 5, 6, and 7.
3.  The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE:  This form may not be used to request copies of documents, nor to request waivers, or clarification of
requirements on current contracts.  Comments submitted on this form do not constitute or imply authorization to waive
any portion of the referenced document(s) or to amend contractual requirements.

I RECOMMEND A CHANGE:
DOCUMENT NUMBER

MIL-STD-188-220AB

DOCUMENT DATE (YYMMDD)

950727980120
3.  DOCUMENT TITLE  Interoperability Standard for Digital Message Transfer Device Subsystems

4.  NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible.  Attach extra sheets as needed.)

5.  REASON FOR RECOMMENDATION

6.  SUBMITTER

a.  NAME (Last, First, Middle Initial) b.  ORGANIZATION

c.  ADDRESS (Include Zip Code) d.  TELEPHONE (Include Area Code)

(1)  Commercial
(2)  DSN
         (If applicable)

7.  DATE SUBMITTED (YYMMDD)

8.  PREPARING ACTIVITY DEFENSE INFORMATION SYSTEMS AGENCY (DISA)
a.  a.  NAME Frank Curcio MR. GERALD RING bb.  TELEPHONE (Include Area Code)

(1) Commercial  908-532-7732     (2) DSN 992-
(1) Commercial  732-427-6893     (2) DSN 987-6893

c.  ADDRESS (Include Zip Code)

Director JIEO
DIR, JOINT INTEROPERABILITY ENGINEERING
Attn: JEBBFBUILDING 283
ATTN: JIEO-JEBB (G. Ring)
FT. MONMOUTH, NJ 07703-5613

IF YOU DO NOT RECEIVE A REPLY WITHIN 45
DAYS, CONTACT:
    Defense Quality and Standardization Office
    5203 Leesburg Pike, Suite 1403,
    Falls Church, VA 22041-3466
    Telephone (703) 756-2340               DSN 289-2340

DD Form 1426, OCT 89 Previous editions are obsolete. 198-290


