MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

APPENDIX F

GOLAY CODING ALGORITHM

F.1. General |
F.1.1 Scope This appendix contains amplifying information in support of MIL-STD-188-220.

F.1.2 Application This appendix is not a mandatory part of |
MIL-STD-188-220. The information contained herein is intended for guidance only.

F.2. Applicable documentsNone. |

F.3. Forward error correctionThe FEC method requires the receiver to detect and

automatlcally correct errors |n a recelved block of mformﬁamnded—@@ay—é%-ﬁ- 8)
is-stan@hednumber of |

errors the receiver can detect and correct depends on the coding method. The information bits (k)
are separated into blocks that contain both information bits and code bits. The length of the
block, including the information and code bits, is (n). The code is described as (n,k), where n is
the length of the block and k is the number of information bits in the block.

F.4. Golay code The Golay code is a linear, block, perfect, and cyclic (23,12) code capable of

correcting any combination of three or fewer errors in a bloéd23 digits. The generator

polynomial for this code iszeast-as-pelynromials-highererderfirst
g) =X+ X+ ¢+ + X+ %+ 1

where g(x) is a factor of %X+ 1

F.4.1 Half-ratend-Extende@olay code. The half-rate Golay code (24;4)2s formed by |

adding aerofill bit to the Golay (23, 12) codextended-Golay-isformed-by-addingan-odd

parity-bitto-the-Gelay(23, 2 Zede—The 44,12 -8The fill bit is not checked on reception. The
(24.12)code is preferable to the (2®) because it has a code rate of exactly one-half. This |

code rate simplifies system timing.

F.4.2 Golay code implementatiorThe Golay code may be implemented in either hardware pr
software. The hardware implementation uses shift-registers for encoding and decoding, as
described ifFF4-21-and-F4-2.F.4.2.1 and F.4.2.2espectively. The software implementation |
uses a generator matrix and conversion table, as describgdr8F |

F-1

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

LNdLNAO <—

S

HLYD

[LYD)

5% =0
|0
5'0% =0

0

Lo (D _ dALSIOEY LAIHS HOVIS-€C _
NNq HN% ONﬁ
¢ > (0IS + 65 + + LS + 95 + GS + §S + ES + ¢S + IS + 0S) 4dI [= 22
Z> (0TS + 68 + + LS 4+ 95 + G6S + ¥S + £S + ZS + IS + 08) JdAI T = 1IZ
€ > (0TS + 65 + + LS + 95 + GS + ¥S + ES + 2S5 + IS + 0S) 441 T = 0Z
SISHEI QTOHSTIHL
0TS 6st 8s Lst o9s GS 1S ¢st ¢s st 0s
-~ & D E ~—O—]—® -0
A A A
[10] MO FALSIOTT
LATHS
DINOAIANAS
€
IO

F-2

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F.4.2.1 Hardware implementatiorisolay code encoding can be performed with an 11-stage
feedback shift register with feedback connections selected according to the coefficients of g(x).

A shift register corresponding to the coefficients of g(x) is shown in Figure F-1. The k

information bits are located at the beginning of the n symbol block code. With the gate open, the
information bits are loaded into the shift register stages and simultaneously into the output
channel. At this time the shift register contains the check symbols. With the gate closed, register
contents are then shifted onto the output channel. The ddssymbols are the check symbols|

that form the whole codeword.

INPUT

- e: > > OUTPUT

Encoder for g(x) = 1 + x 2, 0« Y 2 3 < £ Ao 11
INPUT
: ~
N
OUTPUT
-
4
q f = T L] f D‘?‘ D“D‘—?%—D‘—l?
Ly [cars}—> 5 R , ' .
Encoder for gt =1 + 2+ X + x°+ x%+ x% X'

FigurdFIGURE F-1. Shift register encoding for the (23, 12) Golay code

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

F.4.2.2 Hardware decodingrhe Golay code is decoded using a number of techniques suc)‘l as
the error-trapping process developed by T. Kasami. The Kasami error-trapping decoder for the
Golay code is shown in Figure F-2. It works as follows:

1a. Gates 1, 3, and 5 are opened, and gates 2 and 4 are closed. The received |
codeword r(x) is then shifted into both the 23-stage shift register and the
syndrome register. At the same time, the previously corrected codeword is shifted
out to the user. The syndrome

S(X) =%+ Sx+...+ 5

is then formed and subjected to threshold tests.

F-4

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

LNOdILNO --—]

[1L75)

LY

LYD

FHLSTIOHY LATHS EDVYLS-€7

't

1

Z> (% + %+ %+ S5+ %+ %5+ B+ S5+ %5+ s+ 05 aar 1= 9
Z > (05 + ¢ + & + &L+ B+ 5+ B+ f5 + g3+ g 0g) 441 1 = !z .
— - P o . - — D0D=0
€E> (05 + %5+ &5+ 5+ % + %S+ 5+ &5+ ¢+ g+ 0g) aar 1 = 97 ==
(o]
SLSHL UTOHSHIHL 5'0% =0
Ulg °sA g sA g &S IsA U5 0
—o ¢ o ¢ o =
O FHLSTIOHT
LATHS
OINOIANAS
: [
TELY) T
EARR
*

LOdNT

FIGURE F-2. Kasami error-trapping decoder for the (24, 12) Golay code.

F-5

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

2b. Gates 1, 4, and 5 are closed and gate 2 is opened. Gate 3 remains open. The
threshold tests occur in the following order:

al. If Zois unity, then all the errors are confined to the 11 high-order positions
of r(x), and S(x) matches the errors; apens gate 4 and closes gate 3.
Contents of both the 23-stage shift register and the syndrome shift register
are then shifted 11 times, and the errors are corrected. Then gate 4 is
closed and the contents of the 23-stage shift register are shifted until the
received codeword is in its original position. The decoder then goes to
step 3 below.

b.2. If Z4is unity, the error pattern in S(x) is the same as the errors in the 11
high-order bits of the codeword r(x), and a single error exists at location
x°. Gate 4 is opened and gate 3 is closed. The counter is preloaded with a
count of 2, and both the syndrome shift register and the 23-stage shift
register are shifted until the error inig corrected. Then gate 4 is closed,
and the contents of the 23-stage shift register are shifted until the received

codeword is in its original position. The decoder then goes to step 3.

e3. If Z,is unity, the error pattern in S(x) is the same as the errors in the 11
high-order bits of the codeword r(x), and there is a single error in location
x°. The same steps are followed as in b (above) except that the counter is
preloaded with a count of 3. The decoder then goes to step 3. |

é4. If neither of the three thresholds is unity, the decoder goes directly to step
3.

3c. Gates 1,4, and 5 are closed, and gates 2 and 3 are opened. Contents of bolth the
23-stage shift register and the syndrome shift register are then shifted once to the
right. The decoder then goes to step 2.

4.4d This action continues until step 3 has been executed 46 times. Then the dedoder
returns to step 1 to process the next received codeword.

The decoder always yields an output. The output is correct if there were 3 or fewer errors in the
received codeword, and erroneous if there were more than 3 errors in the codeword.

F.4.2.3 Software implementatiorThe transmitting DMTD shall generate the check bits usinf
the following generator polynomial: |

g)=xt+x0+x8 +x + X+ %+ 1

Note that using modulo 2 addition,

23 — 11 10 6 5 4 2 1 7

F-6

The 11 check bits shall be as derived fronighesing generator matrig:
G, shown in Figure F-3yhere the matrix contains the coefficients of the polynomials on the

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

X3+ 1= (X Ol 1) (XX O x+ 1) (x+1)

xg(xy
xg(x)=
xg(xpxgx=
xg(xyxg(xy

xg(xpx.g(x)=
(xx+x).g(x)=
—fctocton).pl)m

11

10
911

810

6811

2 .22
210

X

1111111111
987664

3210

@
~
-]
]

S
w
N
-

x

Octxx).glx)=
Oeextx+x).g(x)=
(B0 +x). g (x)m
o). g00=

a 35 b Mkl)-g(x)=

25891011

5710

__s_s_soo_nco_\o.la

O O O = O = & O = = - o=

O O =@ O = & O - & - - D

O = O A |a O @ a4 a a0 o0

[N - JE AR N ., T G O G O - T - I -]
- 0O O Ala a4 0 a0 Ao -
- a0 0= O O O = A aa

O =2 a4 0|0 O A a4 a O =

- a0 0|0 A A A O - a0

©O = @ aAa a0 0O = 0 C =
a2 A A ala o0 -~ OO0 - O
© O O OO0 © O ©0 © © © =

0 O 0O OO0 © O 0 O © = ©

0 0O 0 0|0 0 0O 00 -~ © ©

© 0O 0O 00 0 0O 0 - 0 o ©
0O O 0O 0o oo - O 0 o o
0O O 0 00 -~ 0 0 0o o o
© O O 00 - O 0O ©0 © o ©
0O O 0O O~ 0 O 0O 0 o o ©
© O O -0 0 O 0 0 0o o ©
© 0O - 0|0 0 00 0 0 o ©
o - 0 0|0 0 0o 0o 0 o o ©

Parity

Identity

left.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

222120191817161514131211 10 9876543210

X X_

x'". gx) = |[11000111010100000000000

®. gx) = |01100011101010000000000

X*gi) + X «~gx = |[11110110100001000000000

X*+gW + X'+ gx = [01111011010000100000000

x +gx) + x"+gx) = |00111101101000010000000

E+ X+ Ky g = 117011001100000001000000

x°+ x’+ X%« gy = [01101100110000000100000

(x*+ x5+ x9« gx) = |00110110011000000010000

(x*+ x®+ x®+ XM+ gx) = |11011100011000000001000

e xt e o x7+ x% xMy ogx) = |10101001011000000000100

(x o+ xB+ x% e X%+ X% X g = 10010011111000000000010

A x2+ X"+ B+ x% X% X g = 1000111010100000000000 1]
Parity Identity

FIGURE F-3. Generator matrix G.

By interchanging the | and P columns to obtain matrighbwn in Figure F-4that is,

G=[P,I] a2x23)=>[I,P] a2x23=T

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

1000000000001100011101(
010000000000011000111°0
00100000000011110110120
0001000000000111101101
00001000000000111101120
000001000000110110011°0
0o000001000000110110011
T= 0000000100000011011001
nooo0DO0O10001101110001
0000000001001010100101
0000000000101001001111
0000000000011000111010

Fhethe transmission order and value of the code word bits can be obtained by matrix
multiplication (modulo 2 addition without carry) as follows:

[Il::1 INFO BITS 1Ib 12] . |:I,P:| = [INFO BITS,CHECK BITS]
(1x12) (1x23)

L o t
IRST BIT TRANSMITTED FIRST BIT TRANSMITTED

F-9

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

10000 11000111010

1000 01100011101

=N

00 11110110100
0

-k
o
o O O O o
o O O O O o
o O O O O O o
o O O O O O O o
o O O O O O O o o
o O O O O O O O O o
o O O O O O o o o o o
—_
—
o
—
—
o
o O O
=N
=N

111101101

—
-
o o o O
o
e
e
e
e

—_
o o
—_

o O O O O O O o o o
o O O O O O O o o
o O O O O O O o
o O O O O o o
o O O O O o
o O O O O
o O O O
o O O

o

-

—_
o O O

o

—

o

1
-~ o o o o o o o o o o o
(@]
(@]
—
—

N
2

- <
=<

FIGURE F-4. Matrix T.

F-10

MIL-STD-188-220B: 20 January 1998
(New Appendix)

APPENDIX G

PACKET CONSTRUCTION AND BIT ORDERING

G.1. General.

G.1.1 Scope. This appendix illustrates the construction of packets starting with the Application
Layer Protocol Data Unit (PDU) and VMF Message data buffers and ending with the data link
bit order of transmission and physical layer PDU. However this example excludes the S/R
protocol. The focus of this example is to show correct formatting of the 188-220 subnetwork.

G.1.2 Application. This appendix is a mandatory part of this document. The bit ordering
defined herein shall be utilized by all implementers.

G.2. Applicable Documents.

a. RFC 768: User Datagram Protocol
b. RFC 791: Internet Protocol -- DARPA Internet Program Protocol Specification

c. MIL-STD-2045-47001: Interoperability Standard for Connectionless Data Transfer --
Application Standard

d. Joint Interoperability of Tactical Command and Control Systems, Variable Message
Format Technical Interface Design Plan (Test Edition), Reissue 2, Volume llI

G.3. PDU Construction. This section provides examples illustrating the construction and bit
ordering of a VMF message through the Application Layer, the Transport Layer, the Network
Layer, Link Layer and Physical Layer. For clarity, each layer will be discussed separately and
then combined for actual transmission. The same representations will be utilized for each layer:

the MSB (2 bit) is represented with an italicized font and
the LSB (2 bit) is shown to the RIGHT in the Value (binary) column.

This representation is carried into the other columns to identify the beginning and end of each of
the fields as the bits are moved into individual octets. Note that the bit markings for MSB and

LSB are on a field basis, not on an octet basis. Single bit fields are treated as LSB. In addition,
since some layers (e.g. transport) are based on commercial standards, the representation from the
appropriate RFC will also be included. In all cases, we will start with a figure which illustrates

the interaction with upper/lower communication layers, followed by a figure showing the

exchange between communication layers. There will be a table showing the construction of the
PDU. This will be followed by a table showing the construction of each octet and a figure

showing the serial representation of this particular PDU as it would appear at physical layer.

G-1

MIL-STD-188-220B: 20 January 1998
(New Appendix)

Each layer typically adds value and its own header to an outgoing message. This process is
illustrated in Figure G-1.

WF MESSAGE Dore
Layer 7. Application
N . Application
Layer 6: Presentation - No Presentation Header (Null Layen |ineuatease vion
)) and Session features)
Layer &: Session - No Session Header (Null Layer)
Layer 4. Transport uoP
Layer 3: Network ‘P'r’é(’%:c%ﬂ é”ré(?lé)”fél .
Layer 2: Data Link Adarass & [: X : FCs
Transmission :
eqaaer
(Includes FCS) :
Layer 1: Physical | meambe ; : } : : : o | postamoe
Trans. .
Bit Sync Header |flog & Intranet (ip) UDP & Applicati W FCS
Char Synd Address Segmen- plicarion &
e T SRS e Conof & Memet P PSR Header Message frags

FIGURE G-1. PDU construction.

An application header is added to the VMF message at application layer. For this protocol,

layers 5 and 6 are null layers, and no processing or headers are present. The Application Layer
handles these functions. The transport layer adds its header. Although the standard calls out
TCP, UDP and segmentation/reassembly, only UDP is illustrated in this appendix. Next, the
network layer adds the IP header and the Intranet header. The message is how passed to the data
link layer which adds both a header and a trailer. Finally, the physical layer adds its header
resulting in the final PDU for transmission. Note that this example does not include TCP,
segmentation & reassembly, or COMSEC.

G.3.1 VMF Message Data Exchange. The relationship of the VMF Messaging Services to other
communication layers is shown in Figure G-2.

A layered communication model is used in this example for consistency with the principles of

the ISO OSI reference model. The model discussed here is tailored to focus attention
specifically on VMF Messaging Services, and the data it produces. A user of VMF Messaging
Services exchanges Message Content with its peer at another node by sending and receiving the
Message Content via the VMF Messaging Services. VMF Messaging Services sends and
receives the Message Content by converting the Message Content to Message Data and
exchanging the Message Data with its peer at another node. The VMF Message Data is sent and
received via lower communication layers. The lower communication layers send and receive the
VMF Message Data transparently over a variety of communications media. Note that VMF
Messaging Services would ordinarily use Application Layer services from the lower

MIL-STD-188-220B: 20 January 1998
(New Appendix)

communication layers to send and receive Message Data. The Message Data would then appear
in the Application Layer PDU’s VMF message.

Outgoing Frame Incoming Frame
Construction Decomposition
User of VMF User of VMF
Messaging Message Content | — — — — — » | Messaging

Services

Services

i

VMF VMF

Messaging € - - - - - - MessageData |— = = = = 7 > Messaging

Services Services

v v
Lower Lower Lower
Communication [€ — = o Layer Message Data Trailers I — — »| Communication
Layers Headers Layers
g P Communications Path I 8

FIGURE G-2. _VMF message services interaction with other communication layers.

The format of the Message Data is defined in terms of the actual data buffer or data stream used
to exchange the Message Data between the VMF Messaging Services and the lower
communication layers. The rationale for using the Message Data’s data buffer/stream to define
the format is: 1) for consistency with industry standard commercial communications hardware
and software (e.g., UNIX implementations of TCP/IP), which exchange data with other software
when sending or receiving as a buffer or stream of octets; 2) to provide a definition independent
of the specifics of any other communication layer, consistent with the OSI ISO model principle
of making communication layers independent; and 3) to avoid differences in the bit
representations used to implement communications on different media. For example, on
Ethernet LAN media each octet is sent least significant bit first, but on FDDI media each octet is
sent most significant bit first. To achieve a universal definition of the Message Data format, its
representation is defined independent of the other communication layers. The relationship of the
Message Data’s data buffer/stream to the VMF Messaging Services is depicted in Figure G-3.
The Message Data is defined as a buffer or stream of octets. The rational for treating the
Message Data as a series of octets is for consistency with the way communications data is
handled by industry standard commercial communications hardware and software and for
independence from platform-dependent byte ordering issues.

MIL-STD-188-220B: 20 January 1998

(New Appendix)
User of VMF
Messaging
Services
A
Message Content
\4
. Data Buffer
VMF Messaging or
Services Data Stream
(octets)
A —~—— _/

Message
Data

Y
Lower
Communication
Layers

FIGURE G-3._Exchange of message data between communication layers.

G.3.1.1 Example of VMF Message Data Construction. The construction of VMF Message Data
is illustrated by the example in Table G-1. The first four columns of the table provide a descrip-
tion of each field in the example, the field length in bits, and the value of the field in both
decimal and binary representations. The last three columns show the physical encoding of the
VMF Message Data. In the fifth column, Field Fragments, the bits of each field are placed in
octets. The bit(s) of each field are positioned in an octet such that the LSB of the field is
positioned in the least significant unencoded bit of the octet, the next LSB of the field is placed
in the next least significant unencoded bit of the octet, and repeated until all of the bits of the
field have been encoded. When an octet is filled before all the bits of a field are encoded, the
process is continued encoding the next octet with the remaining bits of the field. This field/octet
encoding procedure is performed starting with the first field and octet, and repeated for each
successive field and individual octet, in order, until the encoding is completed. When a field has
groups, the field encoding procedure is performed starting with the first group, and repeated for
each successive group and individual octet, in order, until the encoding of the field is completed.
The Target Number field illustrates the encoding of a field with groups. Note the LSB of a field
or octet is defined as the bit having the weight“of/ien the field or octet is represented as a
numeric value. X’s are used to identify bits that are not associated with the field being encoded.
The sixth column, Octet Value - Binary, assembles the bits contributed by successive fields into
complete octets, represented in binary. The seventh column, Octet Value — Hexadecimal,
represents the octet value in hexadecimal. The last column, Octet Number, numbers the octets
from first to last starting with 0.

When all fields have been encoded, any remaining unencoded bits in the last octet are filled with
zeroes (zero padded). Each VMF Message is individually encoded and zero padded.

G-4

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-1. Example of VMF Message Data Construction.

Field Name

Length | Value Value Field Octet | Octet | Octet
(bits) | (Dec) (Bin) Fragments | Value | Value | Number
(Bin) | (hex)
MSB LSB
2" 2|2 2|2 2°
Check Fire Type 3 0 000 Xxxxx000
Check Fire/Cancel Check fire 3 1 001 XX001XXX
command
FPI 1 1 1 XIXXXXXX
Target Number (Group 1) 7 65 (A) 1000001 Ixxxxxxx| 11001000 C8 0
xx100000
(Group 2) 7 66 (B) 1000010 10xxxxxx| 10100000 AO 1
xxx10000
(Group 3) 14 1543 00011000000111 111xxxxx 11110000| FO 2
11000000| 11000000 CO 3
XxXxxx000
FPI (Observer URN) 1 0 0 XXXXOXXX
FPI (First Unit URN) 1 0 0 XXXOXXXX
GPI DTG 1 0 0 XXOXXXXX
FPI (launcher message) 1 0 0 XOXXXXXX
(Zero Padding) 1 0 0 Oxxxxxxx | 0000000 00 4

G-5

MIL-STD-188-220B: 20 January 1998
(New Appendix)

Figure G-4 illustrates the octets arranged in a serial format as they would appear at the physical
layer, with LSB first.

Octet O Octet 1 Octet 2 Octet 3 Octet 4
20 271 2° 271 2° 271 2° 271 2° 27
00010011 | 000001 | 000111 | 00000011 | (OWDOO0O

FIGURE G-4. Serial representation of PDU.

G.3.2 Application Layer Data Exchange. The relationship of the Application Layer to other
communication layers is shown in Figure G-5. A layered communication model is used in this
example for consistency with the principles of the ISO OSI reference model. The model
discussed here is tailored to focus attention specifically on the Application Layer, and the data it
produces. A user of the Application Layer exchanges a VMF message with its peer at another
node by sending and receiving the VMF message via the Application Layer. The Application
Layer sends and receives the VMF message transparently by producing and exchanging an
Application Layer Protocol Data Unit (PDU) with its peer at another node. The Application
Layer PDU consists of the Application Header concatenated with the VMF message, and is sent
and received via lower communication layers. The lower communication layers send and receive
the VMF message transparently over a variety of communications media.

The format of the Application Layer PDU is defined in terms of the actual data buffer or data
stream used to exchange the PDU between the Application Layer and the lower communication
layers. The rationale for using the PDU’s data buffer/stream to define the format is 1) for
consistency with industry standard commercial communications hardware and software (e.g.,
UNIX implementations of TCP/IP), which exchange data with other software when sending or
receiving as a buffer or stream of octets; 2) to provide a definition independent of the specifics of
any other communication layer, consistent with the OSI model principle of making
communication layers independent; and 3) to avoid differences in the bit representations used to
implement communications on different media. For example, on Ethernet LAN media each octet
is sent least significant bit first, but on FDDI media each octet is sent most significant bit first.

To achieve a universal definition of the PDU format, its representation is defined independent of
the other communication layers.

The relationship of the Application Layer PDU’s data buffer/stream to the Application Layer is
depicted in Figure G-6. The Application Layer PDU is defined as a buffer or stream of octets.
The rational for treating the PDU as a series of octets is for consistency with the way
communications data is handled by industry standard commercial communications hardware and
software and for independence from platform-dependent byte ordering issues. The Application
Header and the VMF message are each individually defined as a series of octets for the same
reasons.

G-6

MIL-STD-188-220B: 20 January 1998

(New Appendix)

Outgoing Frame Incoming Frame
Construction Decomposition
User of User of
Application | ¢ _ _ _ _ _ _ _ _ diilearPata | — — — _ _ _ Application
Layer < User Data » Layer
Services] Services

Y A 4 T
Application |€ — — — — = — APp. |itcarPata | — = = = = = Application
Layer <« Hegger User Data > Layer
\4 v
Lower Lower Application Lower
Communication € — — A Layer Layer Trailers |— — — »| Communication
Layers Headers PDU Layers

P» Communications Path

(¢

FIGURE G-5._Application layer interaction with other communication layers.

User of
Application

Layer Services

User Data
Y
o Data Buffer
Application or
Layer Data Stream
(octets)
A
Application Layer
PDU
(App. Header
& User Data)
Y
Lower
Communication
Layers

FIGURE G-6._Exchange of application layer PDU between communication layers.

G.3.2.1_Example of Application Layer PDU. The construction of an Application Layer PDU is
illustrated by the example in Table G-2. The first four columns of the table provide a description

G-7

MIL-STD-188-220B: 20 January 1998
(New Appendix)

of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations. The last four columns show the physical encoding of the Application
Layer PDU. In the fifth column, Field Fragments, the bits of each field are placed in octets. The
bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in the
least significant unencoded bit of the octet, the next LSB of the field is placed in the next least
significant unencoded bit of the octet, and repeated until all of the bits of the field have been
encoded. When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field. This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed. When a field has groups, the
field encoding procedure is performed starting with the first group, and repeated for each
successive group and individual octet, in order, until the encoding of the field is completed. The
Unit Reference Number field illustrates the encoding of a field with groups. Note the LSB of a
field or octet is defined as the bit having the weight®afiBen the field or octet is represented as

a numeric value. X's are used to identify bits that are not associated with the field being
encoded. The sixth column, Octet Value - Binary, assembles the bits contributed by successive
fields into complete octets, represented in binary. The seventh column, Octet Value, represents
the octet value in binary that should be submitted to the Transport layer. The last column, Octet
Number, numbers the octets from first to last starting with 0.

When all fields have been encoded, any remaining unencoded bits in the last octet are filled with
zeroes (zero padded). The Application Header is individually encoded and zero padded. The
VMF message is individually encoded and zero padded before it is passed to the Application
Layer to have the Application Header added.

Any of the ASCII fields (e.g. Unit Name) in the application header can be terminated by either

an end of text marker, or by using the maximum number of bits. Table G-3 shows how to format
the Unit Name when the Unit Name is used as part of the originator address group. The Unit
Name and Unit Reference Number are mutually exclusive inside the address group — never send
both, Unit Name and Unit Reference Number, in an address group. However if the address group
has a Group Repeat Indicator (GRI) each of the repeatable address groups can be different
address types (e.g. Unit Name or Unit Reference Number).

The Application Header is followed by the VMF message. The VMF message is shown as a
single 10-octet message to complete the Application Layer PDU.

Figure G-7 provides an illustration of the Application Header as it would appear in serial form at
the lower layers.

G-8

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-2. Example construction of the application header.

Syntax Field Description Length Value Value Field Octet Value OCTET
(bits) (Decimal) (Binary) Fragments (Binary) Number
MSB LSB | MSB LSB | MSB LSB
2 20 2 20 2 2
Version 4 1 0001| x x x x00 01
FPI Compression Type 1 0 0 x xx 0 X X X|[x
GPI Presence Indicator (Originator) 1 1 1 xx1 XXX XX
FPI Presence Indicator (URN) 1 1 1 x1 X XXX X|X
Unit Reference Number (Originator) 24 23 000000000000000000010111 1 x x x x x x|Xx1 1100001 0
0000101100001 011 1
000O0O0O0OO0OlOOOOOOODO 2
x0000000O0
FPI Presence Indicator (Unit Name) 1 0 0 OXxxXxxxXXx0000000 3
GPI Presence Indicator (Recipient) 1 1 1 xxxxxxx1
GRI | Group Repeat Indicator (Recipient) 1 0 0 XXX XXXQX
FPI Presence Indicator (URN) 1 1 1 x X XxxXx1Xx|x
Unit Reference Number (Recipient URN) 24 124 000000000000000001111290 111 00xx%2 1100101 4
00000011 00000011 5
000O0O0O0OO0OlOOOOOOODO 6
XX Xxx000
FPI Presence Indicator (Unit Name) 1 0 0 xxxx0x XX
GPI Group Presence Indicator (Information 1 0 0 xxx 0 XXX
GRI | Group Repeat Indicator (Message) 1 0 0 XX 0 XXXXX
User Message Format 4 2 0010 10 xxxxxx |12 0000000 7
X X X X x x00
GPI Group Presence Indicator (Message 1 1 Il x x X xXx1XxXx
Identification)
Functional Area Designator 4 2 0010 x0 0 10 x x X
Message Number 7 1 0000001} 1 x x x xxxx{10010100 8
xx000000
FPI Presence Indicator (Message Subtype #) 1 0 0 x 0 X XX X[x X
FPI Presence Indicator (File Name) 1 0 0 OxxxxxX¥Yx 000000 9

G-9

MIL-STD-188-220B: 20 January 1998

(New Appendix)

TABLE G-2. Example construction of the application header.

Syntax Field Description Length Value Value Field Octet Value OCTET
(bits) (Decimal) (Binary) Fragments (Binary) Number
MSB LSB | MSB LSB | MSB LSB
2n 20 on 20 on 20
FPI Presence Indicator (Message Size) 1 0 0 XXXXXXKO
Operation Indicator 2 0 00| x x x xx00 X
Retransmit Indicator 1 0 D X X X X0 X X K
Message Precedence Code 3 7 117 x1 1 1 X XX X
Security Classification 2 0 00|0xxxxxxx|01110000 10
X X X X X X x0
FPI FPI for Control/Release Marking 1 0 0 x x x XX x 0]x
GPI GPI for Originator DTG 1 1 1 xxxxx1x
Year 7 96 1100000 00000 XxxXY000001m® 11
XXX Xxx11
Month 4 7 0111 x x0 11 1 x x
Day 5 1 00001 01 xxxxxx/01011111 12
XXXxx000
Hour 5 8 01000{ 01 00 0Oxxx|01000000 13
Minute 6 32 100000 x x1 00000
Second 6 16 010000f 0 0O x x x xxxf00100000 14
XXxx0100
FPI DTG Extension 1 0 0 xxx0xxX
GPI GPI for Perishability DTG 1 0 D X x 0 X X X X K
GPI GPI for ACK Request Group 1 0 0 x 0 X XX X X|[X
GPI GPI for Response Data Group 1 0 0 OXXXXXX¥YXx 00®M0OO0O0 15
GPI GPI for Reference Message Data 1 0 0 X XXXxxXxx0
(Zero Padding) 7 0 000000000 0O0OO00O0OXx|000000O0O0 16

G-10

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-3. Example of a Unit Name as Originator.

Syntax Field Description Length Value Value Field Octet Value OCTET
(bits) (Decimal) (Binary) Fragments (Binary) Number
MSB LSB | MSB LSB | MSB LSB
2 2 2" 20 2 2
Version 4 1 0001 x x x x00 01
FPI Compression Type 1 0 0 XXX 0XXXX
GPI Presence Indicator (Originator) 1 1 1 xx1XXXXX
FPI Presence Indicator (URN) 1 0 0 X0 XXXXXX
FPI Presence Indicator (Unit Name) 1 1 1 1 XXXXXXX 1000000(¢(
Unit Name (Originator) 448Max “UNITA”
‘U’ 7 85 1010101 x1 010101
“N” 7 78 1001110] 0 X X X X X X X 01010101 1
xx100111
“I” 7 73 1001001 0 1 x X X X X X 01100111 2
XXxx10010
“T" 7 84 1010100 1 0 O X X X X X 10010010 3
XXxx1010
“A” 7 65 1000001 00 0 1 x X X X 00011010 4
XXXxx100
End of text marker (ANSI ASCII DEL)| 7 127 1112112 11111 x x X 11111100
X XXX xx1l1
GPI Presence Indicator (Recipient) 1 1 1 XX XXX XX
encode rest of the message as in Figure G-3
Octet 0 Octet 1 Octet 2 Q Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 1
2" 2| 2° 2| 2° < 2" 27| 2° 2" | 2° 2| 2° 2| 2° 27| 2° 2’
10000111| 1101000040 00000000g 00100000, .L111010| 00000010 | OO0O0OCLOO | OO1000000| OOOOOOO

g

FIGURE G-7._Application header (octets).

G-11

MIL-STD-188-220B: 20 January 1998
(New Appendix)

G.3.3 Transport Layer Data Exchange. The relationship of the Transport Layer to other
communication layers is shown in Figure G-8. A user of the Transport Layer exchanges data
with its peer at another node by sending and receiving the Application Layer PDU via the
Transport Layer. The Transport Layer sends and receives the Application Layer PDU
transparently by producing and exchanging a Transport Layer Protocol Data Unit (PDU) with its
peer at another node. The Transport Layer PDU consists of the Transport Header concatenated
with the Application Layer PDU, and is sent and received via lower layer communication layers.
The lower communication layers send and receive the Transport PDU transparently over a
variety of communications media.

Outgoing Frame Incoming Frame
Construction Decomposition

User of Aoplicat User of
Transport | o _ _ _ _ _ _ _ _ pplication| _ _ _ _ _ _ Transport
Layer « Layer PDU > Layer
Services L] Services

Y Y T

Transport |€ — — — — — Transport [Applicationf — — — — — — »| Transport

Layer Header |Layer PDU Layer

A4 \4
Lower Lower Transport Lower
Communication € — — | Layer Layer Trailers |- — — »| Communication
Layers Headers PDU Layers
g » Communications Path | 8

FIGURE G-8._Transport layer interaction with other communication layers.

The relationship of the Transport Layer PDU’s data buffer/stream to the Application Layer is
depicted in Figure G-9. The Transport Layer PDU is defined as a buffer or stream of octets
consisting of the VMF message, Application Header and Transport Header.

G.3.3.1 An Example of UDP Header Construction. UDP is described by RFC 768. The UDP
header from RFC 768 consists of 8 octets as shown in Figure G-10 with the example values to be
used for this appendix. . Since the RFC treats bit 0 as most significant bit (MSB), Figures G-10
and G-11 show 8as MSB. For this example, the source has a value of 1581, destination of

1581, length of 30 and the checksum equals 3491. MIL-STD-188-220 typically treats the least
significant bit as bit O.

G-12

MIL-STD-188-220B: 20 January 1998

(New Appendix)
Application
| Layer \

A

Application Layer PDU
(Application Header
& User Data)

Data Buffer

Transport or

Layer Data Stream
(octets)

Transport Layer PDU
(Application Header
& User Data &
Transport Header)

Y
Lower
Communication
Layers

FIGURE G-9. Exchange of transport layer PDU between communication layers.

0 7] 8 15| 16 23 24 31
UDP Source (1581) UDP Destination (158[1)
UDP Length (30) UDP Checksum (3491)

Bit 0 is most significant bit (MSB)
FIGURE G-10._UDP header.

Figure G-11 illustrates the eight octets comprising UDP with the binary bit patterns. Each octet
is marked to show both the MSB and LSB of each octet. It demonstrates how each of the octets

are arranged and passed in order to next layer.

Octet O Octet 1 Octet 2 Octet 3
Bo B7 | Bs Bis | Bis B3 | Boa Ba1
2/ 20|27 20|27 202 2°
00000110 00101101 00000110 00101101
UDP Source (1581) UDP Destination (1581)
Octet 4 Octet 5 Octet 6 Octet 7
Bo B7 | Bs Bis | Bis B3 | Boa Ba1
2’ 20|27 2|27 20027 2°
00000000 00011110 00001101 10100011
UDP Length (30) UDP Checksum (3491)

FIGURE G-11 Octet representation of UDP header.

G-13

MIL-STD-188-220B: 20 January 1998

(New Appendix)

The construction of a Transport Layer Header is illustrated by the example in Table G-4. The
first four columns of the table provide a description of each field in both decimal and binary
representations. The last two columns show the physical encoding of the Transport Layer PDU.
In the fifth column, Field Fragments, the bits of each field are placed in octets. The bits(s) of
each field are positioned in an octet such that the LSB of the field is positioned in the least
significant unencoded bit of the octet, the next LSB of the field is placed in the Next last
significant unencoded bit of the octet, and repeated until all of the bits of the field have been
encoded. When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field. This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed.. The sixth column, Octet
Value - Binary, assembles the bits contributed by successive fields into complete octets,
represented in binary. The last column, Octet Number, numbers the octets from first to last

starting with 0.

TABLE G-4. Example construction of UDP header.

Field Name | Length | Value Value Field Fragments | Octet Value| Octet
(Dec) (Bin) (Bin) Number
MSB LSB | 2 20| 2 2°
215 20
UDP Source 16 1581 | 0000011000101101| 00000110 | 00000110 0
00101101 | 00101101 1
UDP 16 1581 | 0000011000101101] 00000110 | 00000110 2
Destination 00101101 | 00101101 3
UDP Length 16 30 0000000000011110f 00000000 | 00000000 4
00011110 | 00011110 5
UDP 16 3491 | 0000000010100011] 00001101 | 00001101 6
Checksum 10100011 10100011 7

Table G-5 illustrates the eight octets of the Transport Header showing the binary value of the
octet, the octet number (0-7) and the field represented by each octet. Note that the bit with the
bold italicized font identifies the MSB [Rof the field, not the octet.

Figure G-12 provides a serial representation of the UDP header as it would appear at the physical

layer.

G-14

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-5. Octet representation of UDP header.

Octet Value Octet Field Name
(Binary) Number
2’ 2°

00000110 0 Source

00101101 1 Source

00000110 2 Destination

00101101 3 Destination

00000000 4 Length

00011110 5 Length

00001101 6 Checksum

10100011 7 Checksum
Octet O Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet |
2° 2| 2° 2| 2° 27| 2° 27| 2° 27| 2° 27| 2° 2| 2° 2’
011000® 10110100 0110000| 10110100 000000M| 01111000 1011000) 11000101

FIGURE G-12. Serial representation of UDP header.

G.3.4 Network Layer Data Exchange. The relationship of the Network Layer to other
communication layers is shown in Figure G-13. A user of the Network Layer exchanges data
with its peer at another node by sending and receiving the Transport Layer PDUs via the
Network Layer. The Network Layer sends and receives the Transport Layer PDUs transparently
by producing and exchanging a Network Layer PDU. The Network Layer PDU consists of the
Network Headers concatenated with the Transport Layer PDU, and is sent and received via
lower layer communication layers. The lower communication layers send and receive the
Network Layer PDU transparently over a variety of communications media.

The relationship of the Network Layer PDU’s data buffer/stream to the Transport Layer is
depicted in Figure G-14. The Network Layer PDU is defined as a buffer or stream of octets
consisting of the VMF message, Application Header, Transport Header and Network Headers.
There are two Network Headers in the Network Layer PDU when using MIL-STD-188-220.

The Internet Protocol (IP) is described by RFC 791. The IP header from RFC 791 is shown in
Figure G-15 with the example values to be used for this appendix.

G-15

MIL-STD-188-220B: 20 January 1998
(New Appendix)

Qutgoing Frame Incoming Frame
Decomposition

Construction

User of User of
Network € - —— — — = — — Transport | _ _ _ _ _ _ > Network
Layer Layer PDU Layer
Services L] Services
Y \ 4 T
Network €« — — — — — Network | Transport | — — — — — — » Network
Layer Headers |Layer PDU Layer
\4 v
Lower Lower Network Lower
Communication l€ — = | Layer Layer Trailers = = = »| Communication
Layers Headers PDU Layers
g P Communications Path | 8

FIGURE G-13._Network layer interaction with other communication layers.

Transport

Layer

Transport Layer PDU
(Transport Header &
Application PDU)

\ 4
Data Buffer
Network or
Layer Data Stream
(octets)
A
Network Layer PDU
(Application PDU &
Transport Header &
Network Headers)
Y
Lower
Communication
Layers

FIGURE G-14._Exchange of network layer PDU between communication layers.

G-16

MIL-STD-188-220B: 20 January 1998

(New Appendix)
0 1 2 3
01 23 45 67 8901 23 45 67 8901 23] 45 67 8901
Ver (4) | IHL (5) Type of Service (0) Total Length (50)
Identification (1) Flag (0) | Fragment Offset (0)
Time to Live (50) | Protocol (17) Header Checksum (4093)
Source Address (192.31.124.65)
Destination Address (192.31.124.61)

FIGURE G-15._IP header.

G.3.4.1_Example of Internet Layer Header. The construction of an Internet Layer Header is
illustrated by the example in Table G-6. The first four columns of the table provide a description
of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations. The last three columns show the physical encoding of the Internet
Layer Header. In the fifth column, Field Fragments, the bits of each field are placed in octets.
The bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in
the least significant unencoded bit of the octet, the next LSB of the field is placed in the next
least significant unencoded bit of the octet, and repeated until all of the bits of the field have
been encoded. When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field. This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed. X'’s are used to identify bits
that are not associated with the field being encoded. The sixth column, Octet Value - Binary,
assembles the bits contributed by successive fields into complete octets, represented in binary.
The last column, Octet Number, numbers the octets from first to last starting with 0.

Figure G-16 illustrates the Internet Header demonstrating the relationship between the individual
bits (B° - BY), the bit weighting (2- 2°), the individual fields and the example bit patterns
associated with each field.

G-17

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-6. Example construction of IP_header.

Field Name Length Value Value Field Octet Value | Octet
(Dec) (Binary) Fragments (Binary) Number
2n 20 2n 20 2n 20
Version 4 4 0100 0100xxxX
Internet Header Length 4 5 0101 xxxx0101 01000101 0
Type of Service 8 0 00000000 00000000 00000000 1
Length 16 50 0000000000110019 00000000, 00000000 2
00110010 00110010 3
Identification 16 111 000000000000000L 00000000, 00000000 4
00000001 00000001 5
Flags 3 0 000 000XXXXX
Fragmentation Offset 13 0 000000000000(d x>x00000 00000000 6
00000000 00000000 7
Time to Live 8 50 00110010 00110010 00110010 8
Protocol 8 17 00010001 00010001] 00010001 9
Header Checksum 16 4093 00001111111113201 00001111 00001111 10
11111101 11111101 11
Source Address 32 192.31.124.65 1100000000011114 11000000 11000000 12
0111110001000004 00011111 00011111 13
011111000 01111100 14
01000001 01000001 15
Destination Address 32 192.31.124.61 1100000000011114 11000000 11000000 16
0111110000111104 00011111 00011111 17
011111000 01111100 18
00111101 00111101 19

G-18

MIL-STD-188-220B: 20 January 1998

(New Appendix)
Octet O Octet 1 Octet 2 Octet 3
Bo B, | Bg B, | By B, | Bo B,
2’ 20 2 2|2 20 2 2°
01000101 000000O0O 000000O0O0 00110010
Ver (4) | IHL (5) Type of Service (0) Total Length (50)
Octet 4 Octet 5 Octet 6 Octet 7
Bo B, | Bg B, | By B, | Bo B,
2’ 20| 2 220 2 20| 2 2°
000000O0O0 0000001 00D 00OO0O0O 000000O00O
Identification (1) Flag (0) Fragment Offset (0)
Octet 8 Octet 9 Octet 10 Octet 11
Bo B, | Bg B, | By B, | Bg B,
2’ 20 2 2|2 20 2 2°
00110010 00010001 00001111 11111101
Time (50) Protocol (17) Header Checksum (4093)
Octet 12 Octet 13 Octet 14 Octet 15
Bo Bz [Bo Bz | Bo Bz [Bo B
2’ 2| 2 2|2 2| 2 2°
11000000 00011111 01111100 01000001
Source Address (192.31.124.65)
Octet 16 Octet 17 Octet 18 Octet 19
Bo B, | Bg B, | By B; | Bo B,
2’ 20 2 2|2 2| 2 2°
11000000 00011111 01111100 00111101

Destination Address (192.31.124.61)

FIGURE G-16._Octet representation of IP_header.

G-19

MIL-STD-188-220B: 20 January 1998

(New Appendix)

G.3.4.2_Example of Intranet Layer Header. The construction of an Intranet Layer Header is
illustrated by the example in Table G-7. The first four columns of the table provide a description
of each field in the example, the field length in bits, and the value of the field in both decimal
and binary representations. The last three columns show the physical encoding of the Intranet
Layer Header. In the fifth column, Field Fragments, the bits of each field are placed in octets.
The bit(s) of each field are positioned in an octet such that the LSB of the field is positioned in
the least significant unencoded bit of the octet, the next LSB of the field is placed in the next
least significant unencoded bit of the octet, and repeated until all of the bits of the field have
been encoded. When an octet is filled before all the bits of a field are encoded, the process is
continued encoding the next octet with the remaining bits of the field. This field/octet encoding
procedure is performed starting with the first field and octet, and repeated for each successive
field and individual octet, in order, until the encoding is completed. X'’s are used to identify bits
that are not associated with the field being encoded. The sixth column, Octet Value - Binary,
assembles the bits contributed by successive fields into complete octets, represented in binary.
The last column, Octet Number, numbers the octets from first to last starting with 0. This
example only illustrates the Intranet Header fields that must be transmitted as a minimum.

TABLE G-7. Example construction of Intranet header (minimum).

Field Name Length Value Value & Byte Field Octet Value | Octet
(Decimal) | Representatio | Fragments | (Binary) Number
n
(Binary)
2" 22 22 2°
Version Number 4 0 0000 | xxxx0000
Message Type 4 4 0100| 0100xxxx | 01000000 0
Intranet Header 8 3 00000011 00000011 | 00000011 1
Length
Type of Service 8 0 00000000] 00000000 | 00000000 2

The Intranet layer is defined in MIL-STD-188-220 and is shown in Figure G-17 with the

example values used in this appendix.

Octet 0 Octet 1 Octet 2
2 212 2" 2° 2
0000 0010 110000® 000000®
Version (0) Message Type (4 Intranet Header Length (3) Type of Service (0)

FIGURE G-17.

Intranet header .

Figure G-18 provides a serial representation of the Network Layer PDU as it would appear at the

physical layer.

G-20

MIL-STD-188-220B: 20 January 1998

(New Appendix)
Intranet header IP header
Octet O Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7 Octet 8 Octet 9 Octet 1
2° 27| 2° 27| 2° 27| 20 27| 20 27| 20 27 [20 27| 2° 27| 2° 27| 20 27| 20 2!
00000010 | 110000@ | OO0000® | 10100010 | OOO000M | OOOOOO® | 01001100[00000GD| 10000000; 000OO@D| OOO0O0000
IP header (continued)
Octet 11 | Octet 12 | Octet 13| Octet 14| Octet15 Octet 16 Octetlf Octet1l8 Octetl1l9 OctetpPO Octet
20 27| 2° 27| 2° 27| 20 27| 20 27| 20 27| 20 27| 2° 27| 2° 27| 20 27| 20 2!
010011® | 1000100 | 111100@ | 10111111 OOO0OOQ1| 11111000, 00111110 10000010 00000Q111111000{ 0011111
IP header
(end)
Octet 22
2 | 2
10111100

FIGURE G-18. Serial representation of network layer PDU.

G-21

0

21

MIL-STD-188-220B: 20 January 1998
(New Appendix)

G.3.6 Data Link Layer Data Exchange. The relationship of the Data Link Layer to other
communication layers is shown in Figure G-19. A user of the Data Link Layer exchanges the
Network Layer PDU with its peer at another node by sending and receiving the Network PDU
via the Data Link Layer. The Data Link Layer sends and receives the VMF message
transparently by producing and exchanging a Data Link Layer PDU with its peer at another node.
The Data Link Layer PDU consists of the Transmission Header, and Data Link Frame Header,
Network PDU, and the Data Link Frame Trailer, and is sent and received via the Physical layer.
The Physical layer sends and receives the VMF message transparently over a variety of
communications media.

Outgoing Frame Incoming Frame
Construction Construction

1

User of User of

Datalink | @ — — — — — — — _ _ _ Network| ~ Data Link
Layer Layer Layer
Y PDU Y
Services L] Services

Y y

DataLink |g — — — — | Transmis-|Data Link Nf;Vng;k Datal _ _ _p Data Link

Layer Header | Header PDU |Trailer ayer

\ 4
Physical Physical : Physical Physical
Layer € — Lgyer Data ll‘D'BTJLayer Lz)-zlyer - > Layer
Header Trailer
g P Communications Path I 8

Figure G-19._Data link layer interaction with other communication layers.

The format of the Data Link Layer PDU is defined in terms of the actual data buffer or data
stream used to exchange the PDU between the Network Layer and the Physical Layer. The
relationship of the Data Link Layer PDU’s data buffer/stream to the Intranet Layer is depicted in
Figure G-20. The Data Link Layer PDU is defined as a buffer or stream of octets consisting of
the Transmission Header, Data Link Frame Header, Network PDU and Data Link Layer trailer.

G.3.6.1 _Example of Data Link Layer PDU. The Data Link Layer PDU consists of the
Transmission Header, Data Link Frame Header, Followed by the information field and Data
Link Frame Trailer as shown in Figure G-21. The information field consists of the Network
PDU described previously (VMF message, Application Header, Transport Header, IP Header
and Intranet Header).

G-22

MIL-STD-188-220B: 20 January 1998
(New Appendix)

Network

Layer

Network Layer PDU
(Application PDU &
Transport Header &
Network Headers)

Data Buffer

or
Layer Data Stream
(octets)

Data Link Layer PDU
(Application PDU
& Transport Header
& Network Headers
& Data Link Header & Trailer)

\ 4

Physical
Layer

FIGURE G-20._Exchange of data link layer PDU between communication layers.

Trans- Data
mission | Link Information Field Data Link Frame
Header Frame '
Trailer
Header

FIGURE G-21._Data link layer PDU.

Table G-8 illustrates the Data Link Frame Header, and Table G-9 illustrates the Data Link Frame
Trailer. The first four columns of the tables provide a description of each field in the example,
the field length in bits, and the value of the field in both decimal and binary representations. The
last three columns show the physical encoding of the Data Link Frame. In the fifth column,

Field Fragments, the bits of each field are placed in octets. The bit(s) of each field are positioned
in an octet such that the LSB of the field is positioned in the least significant unencoded bit of
the octet, the next LSB of the field is placed in the next least significant unencoded bit of the
octet, and repeated until all of the bits of the field have been encoded. When an octet is filled
before all the bits of a field are encoded, the process is continued encoding the next octet with
the remaining bits of the field. This field/octet encoding procedure is performed starting with the
first field and octet, and repeated for each successive field and individual octet, in order, until the
encoding is completed. The sixth column, Octet Value - Binary, assembles the bits contributed
by successive fields into complete octets, represented in binary. The last column, Octet Number,
numbers the octets from first to last starting with O.

G-23

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-8. Example construction of data link frame header.

Field Name Length Value Value Field Octet Value Octet
(Dec) (Binary) Fragments (Binary) Number
2n 20 2n 20

Flag 8 126 01111110 01111110f 01111110 0

Command/Response Bit 1 0 0 XXXXxXxxx0

Source Address 7 7 0000111f 0000111x] 00001110 1

Extension Bit 1 1 il XXXXXXX]

Destination Address 7 4 0000100{ 0000100x] 00001001 2

Control Field 8 19 00010011} 00010011 00010011 3

TABLE G-9. Example construction of data link frame trailer.

Frame Check Sequence 32 162159487 00001001101010100101110101111111 00001001 00001001 0

(transmitted MSB first) 10101010 10101010 1
01011101 01011101 2
01111111 01111111 3

Flag 8 126 01111110 01111110 01111110 4

G-24

MIL-STD-188-220B: 20 January 1998
(New Appendix)

Table G-10 illustrates the octets comprising the Data Link Frame showing the actual bit patterns
from the previous examples for each layer, the octet number based on each individual layer, and
the octet number based on entire Data Link Frame. This data is shown in serial representation as
it would be transmitted in Figure G-22.

TABLE G-10. Octets comprising data link frame.

o7 20 Nomenclature Octet Number Octet Number
(Individual Layer) | (Entire Transaction)
01111110 Flag 0 0
00001110 Source Address 1 1
00001001 Destination Address 2 2
00010011 Control Field 3 3
01000000 0 4
00000011 INTRANET HEADER 1 5
00000000 2 6
01000101 0 7
00000000 1 8
00000000 2 9
00110010 3 10
00000000 4 11
00000001 5 12
00000000 6 13
IP HEADER
01111100 18 25
00111101 19 26
00000110 0 27
00101101 1 28
00000110 2 29
UDP HEADER
10100011 7 34

G-25

MIL-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-10. Octets comprising data link frame.

o7 20 Nomenclature Octet Number Octet Number
(Individual Layer) | (Entire Transaction)
1110001 0 35
00001011 1 36
01110000 10 45
0000010 11 46
01011111 APPLICATION HEADER 12 47
010000 13 48
000m@100 15 50
00000000 16 51
11001000 0 52
10100000 1 53
11110000 2 54
11000000 3 55
CHECKFIRE MESSAGE

000000 4 56
00001001 | Note: FCS transmitted MSB First 0 57
10101010 FCS 1 58
01011101 2 59
01111111 3 60
01111110 Flag 0 61

G-26

MIL-STD-188-220B: 20 January 1998

(New Appendix)
DATA LINK FRAME HEADER | INTRANET HEADER IP L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 Yd
22 20|20 27|20 27|22 2|2 20|20 27|22 27| 2° 7|2 | 7|2 | gl 7| 20120 2 ;
FLAG SRC DST CNTL \% T LEN TOS L Y, TOS Total Length Identification Offset |flag Offset >.
0111110 | 0111000 | 1001000 | 1100100 0000 0010 1100000 | 000000@ | 1010 | 0010 | OOOOOO@ | OOOOOOM® | 01001100 OOOOOGD| 10000000 0O0OCD | 00O OOOOOOOO>
< P UDP < APP. HEADER > APP. HEADER =
< 25| 26 27 28 29 30 S 34 35 36 < 45 46 47 A
@ 21120 27|20 27|2° 2'|20 2| 2° 27? % 2120 27| 2° 27$ %) 2120 27|2° 2'|2° 27>
S
{ DESTINATION SOURCE DESTINATION %HKSM GPI-FPI-ORIG ‘h\ Message Size- etc. GPI-YRi
{OOllllD 10111100 01100(ﬂ)| 10110100 011000D| 10110100 {llOOOIOl 100111| 1101000 { 000010 | 00100000| 1111010 0C000010)

APP. HEADER VMF MESSAGE < LINK FRAME TRAILER

50 51 52 53 54 55 56 57 58 59 60 61

20 27 20 27 20 27 20 27 20 27 20 27 <> 20 27 27 20 27 20 27 20 27 20 20 27
Min/Sec-etc. CF-etc. GROUP-etc Pad | FCS | FLAG

00100000 | 0000000 | 00010011 | 0000a01 | 0ooai1il | 00000011 | 0mo0000 | 00001001 | 10101010 | 01011101 | 01111111 0110110

FIGURE G-22. Serial representation of data link layer PDU.

G-27

MIL-STD-188-220B: 20 January 1998
(New Appendix)

G.3.6.1.1_Zero Bit Insert/v36 scramble/FEC/TDC of the data link frame. The Data Link Frame
must be zero inserted to prevent any part of the data accidentally being interpreted as a Frame
Flag. Also in our example scrambling, FEC and TDC are being used. Figure G-23 shows some
of the example data before applying zero-bit insertion, scrambling, FEC or TDC. After zero bit
insertion, scrambling, FEC and TDC, the fields are not easy to identify; therefore field names are

not shown.
1 word 2 word 3 word
20 27| 2° 27| 2° 20| 2° 27| 2° 20| 2° 27
0x7e70 0x90c8 0X02¢0 i
30 word 31 word 32 word
20 27| 2° 27| 2° 20| 2° 27| 2° 20| 2° 27
D 0x09aa 0x5d7f 0x7e00

FIGURE G-23. Data before zero bit insertion in transmission order.

The following is a Hex dump of the data link frame in the different stages: (a) zero bit inserted,
(b) scrambled, (c) FEC, and (d) TDC:

Note: In the following dumps the 16 bit values are in transmission order. The TWC in the
physical layer is defined in words and fields are no longer easily distinguishable.

a. Data after zero bit insertion (505 bits plus 7 padding bits)

0x7e70 0x90c8 0x02c0 0x00a2 0x0000 0x4c00 0x8000 0x004c 0x88f0 Oxbe81 Oxf60f
0x9040 0x7d83 Oxe5e3 0x05a3 0x05a0 0x03c5 0x862c 0x3e40 0x0002 0x9f00 0x0002
0x5200 0x1c41 0xf202 0x0420 0x0013 0x050f 0x0300 0x09aa 0x5d7d OxbfOO

Data after V.36 scrambling (512 bits)

. 0x8f80 0x872a 0xal61l 0x7ala Oxbfaa 0x524c 0x50c3 0x50aa 0x024c 0x6¢c2 0x9ca9

0x6b17 0Oxe9f3 0x0403 Oxbda9 Oxfe4c Oxfc54 0x3014 0x02e2 Oxe3a7 0xb9fa 0xdfo0
0x0006 0x2754 Oxflbf Ox5f20 Ox0b70 0xe695 0x59a2 0xfc47 0x616b 0x5d41

Data after FEC(Golay 24,12) (data size in bits: 0x0408 plus 8 padding bits)

Golay (24,12) is derived from Golay (23,12):See paragraph F 4.1 for details.

0x8f8a 0x5a08 0x7898 Ox2aae 0x8616 0x140a 0x7a0b OxfOab 0xf3e8 Oxaa54 0x7624
0xc5a0 0x50c6 0xde35 0x0622 0xaa06 0x0a24 0xc5a0 0x6ccO 0x4029 0xc884 0xa960
0x08b1 0x7c8c 0xe9f3 0x1e30 0x424a 0x03b9 0xb8da 0x9dcO Oxfe40 Ox8acf Oxc6f6
0x543d 0xc201 0x49f0 0x02e8 0xa22e 0x3632 Oxa7b7 0x3c9f Oxa4d0 0xdf93 0x3e00
0x0000 0x0622 0x6a75 Ox4a8e 0xflbd Oxe6f5 Oxfae8 0x200f 0x68b7 0x0c9a Oxe69b
0x5e55 0x9a5c¢c 0xa2f3 0x54c4 0x7¢c94 0x6169 0x9cb5 Oxd5ec 0x4105 0x5¢00

G-28

MIL-STD-188-220B: 20 January 1998
(New Appendix)

d. Data after TDC(16.24) (data size in bits: 0x0480)

0x8623 0x0888 0x2f7f 0x18c1 Oxee2e 0x9158 0xbe20 0x8447 Oxa59c 0x479f 0x6403
0x5601 0xe805 0x33f1 Oxace0 0x0d10 0x6d95 0x8e88 0x0f50 Oxca80 Oxd4a3 0x2285
0xb2e0 0x0000 0x9c38 0x9e09 0xc861 0x5a19 0x9c58 0x0e7b 0x3cfa 0xa539 0xb4b8
0xcd81 0xa2f2 0xb268 0x3381 0x1670 0xc46b 0xb328 0x3f91 0x5712 Ox25ea 0xa578
0xe82b 0x8429 0xcecb 0x0000 0xdb40 Oxcdal OxfacO 0xd440 0x0000 0x5d40 0x1a00
0xd4e0 Oxce40 0x43c0 0xc380 0xcf40 0xfd80 0xb160 0x6e00 OxaaeO Oxd1cO Oxee60
0xe040 0x1fa0 0x7ce0 0x8fe0 0x9800 0x0000

G.3.6.1.2 Construction of the Transmission Header. The Transmission Header precedes the data
link frame and formatted as defined in Table G-11.

G.3.6.1.3_Zero Bit Insert/v36 scramble/FEC of the Transmission Header. The Transmission
Header must be zero inserted to prevent any part of the data accidentally being interpreted as a
Frame Flag. After zero bit insertion, the fields are not easy to identify; therefore field names are
not shown. The following is a Hex dump of the Transmission Header of zero bit inserted:

Transmission Header after zero bit insertion (Size In Bits 0x0040)
Ox7ee0 0x001c 0x2119 0x707e

G.3.6.1.4_Completed Data Link Layer PDU to be passed to the physical layer. The data link
layer passes the Data Link Layer PDU to the physical layer The elements of a Data Link Layer
PDU include one transmission header and one or more PDUs. The following complete data link
PDU (consisting of transmission header and data link frame) will be passed to the physical layer:

Complete Data Link Layer PDU

Transmission Header:
Ox7ee0 0x001c 0x2119 0x707e

b. Data Link Layer Frame (72 16 bit words):

0x8623 0x0888 0x2f7f 0x18c1 Oxee2e 0x9158 0xbe20 0x8447 Oxa59c 0x479f 0x6403
0x5601 0xe805 0x33f1 Oxace0 0x0d10 0x6d95 0x8e88 0x0f50 Oxca80 Oxd4a3 0x2285
0xb2e0 0x0000 0x9c38 0x9e09 0xc861 0x5a19 0x9c58 0x0e7b 0x3cfa 0xa539 0xb4b8
0xcd81 0xa2f2 0xb268 0x3381 0x1670 0xc46b 0xb328 0x3f91 0x5712 Ox25ea 0xa578
0xe82b 0x8429 0xcecb 0x0000 0xdb40 Oxcdal OxfacO 0xd440 0x0000 0x5d40 0x1a00
0xd4e0 Oxce40 0x43c0 0xc380 0xcf40 0xfdB80 0xb160 0x6e00 OxaaeO Oxd1cO Oxee60
0xe040 0x1fa0 0x7ce0 0x8fe0 0x9800 0x0000

G.3.7 Physical Layer Data Exchange. The relationship of the Physical Layer to other
communication layers is shown in Figure G-24. A user of the Physical Layer exchanges the Data
Link Layer PDU with its peer at another node by sending and receiving the Data Link PDU via
the Physical Layer.

G-29

Ml

L-STD-188-220B: 20 January 1998
(New Appendix)

TABLE G-11. Example construction of data link transmission header.

Field Name Length Value Value Field Octet Octet
(Dec) (Binary) Fragments Value Number
(Binary)
2n 20 2n 20
Flag 8 126 01111110, 01111110, 01111110 0
FEC 1 0 1 XXXXXXX 1
TDC 1 0 1 XXXXXXLX
Scramble 1 0] XXXXX1X
Topology Update Id 3 0 000 XX000XXX
Transmit Queue 10 0 0000000000 OOXXXXX 00000111 1
00000000] 00000000 2
FCS 32 471931248 00011100001000010001100101110000 00011100, 00011100 3
00100001 00100001 4
00011001 00011001 5
01110000 01110000 6
Flag 8 126 01111110, 01111110, 01111110 7
1 2 86 87 |
0x64f2 0xf296 0x905e 0xe098 0x0000 0x0000

0110010011110010

1111001010010110

1001000001011;;;; ;

1110000010011p00

0000000000000000

0000000000000000

FIGURE G-24. Serial representation of physical layer transmission unit.

G-30

MIL-STD-188-220B: 20 January 1998
(New Appendix)

G.3.7.1 _Physical Layer Processing Example. The Physical layer encodes data submitted by the
data link layer in a format to meet the physical media’s requirements. This example does not
address the electrical or mechanical functions normally associated with the physical layer
protocols. At the physical layer the transmission header is extracted and the TWC is calculated,
the Transmission header is FEC & TDC encoded.(Note the other physical layer functions
(COMSEC, DMTD, etc) are not shown in this example.

[TWC | Transmission Headgr Data Link Frare

G.3.7.1.1_Transmit Word Count (TWC). TWC is calculated across the data link frame plus the
size of the encoded Transmission Header & TWC size (encoded Transmission Header & TWC
[10.5 16 bit words]). Therefore this Physical layer PDU’s TWC would be calculated as follows:

TWC = encoded data link frame + encoded Transmission Header and TWC
TWC = 72 words + 10.5 words (rounded up to nearest word)
TWC = 83 words

[TWC (83) | Transmission Headdr Data Link Frane

Transmission header including TWC (size in bits: 0x004C)
Oxca07 Oxee00 0x01c2 0x1197 0x07e0

G.3.7.1.2_FEC & TDC of Transmission Header. The Transmission Header must have FEC &
TDC encoding applied. Below is the Transmission Header in the different stages of FEC &

TDC:

a. Transmission header/with TWC after FEC (Golay 24,12) (size in bits: 0x00a8)
Golay (24,12) is derived form Golay (23,12):See paragraph F 4.1 for details.
OxcaOf 0x587e 0xe806 0x0000 0x001c 0x20c8 0x1191 Oxfe70 Ox75a4 0xe005 0x2600

b. Transmission header/with TWC after TDC (7,24)(size in bits 0x00a8)
0x838d Oxlaed 0x0a30 0x0448 0x8950 0x6c10 Oxe047 0x1d30 0x3c49 0x89d2 0x8000

G-31

MIL-STD-188-220B: 20 January 1998
(New Appendix)

G.3.7.1.3_The Physical Layer PDU. Complete message including 64-bit frame synchronization,
TWC, transmission header, and data link frame. (size in bits 0x0568):

0x64f2 0xf296 0x905e Oxadd9 0x838d Oxlaed 0x0a30 0x0448
0x8950 0x6¢10 0xe047 0x1d30 0x3c49 0x89d2 0x8086 0x2308
0x882f 0x7f18 Oxclee 0x2e91 0x58be 0x2084 0x47a5 0x9c47
0x9f64 0x0356 0x01e8 0x0533 Oxflac O0xe00d 0x106d 0x958e
0x880f 0x50ca 0x80d4 0xa322 0x85b2 0xe000 0x009c 0x389e
0x09c¢c8 0x615a 0x199c 0x580e 0x7b3c Oxfaa5 0x39b4 0xb8cd
0x81a2 0xf2b2 0x6833 0x8116 0x70c4 0x6bb3 0x283f 0x9157
0x1225 Oxeaab 0x78e8 0x2b84 0x29ce 0xcb00 0x00db 0x40cd
OxaOfa 0xc0d4 0x4000 0x005d 0x401a 0x00d4 OxeOce 0x4043
0xc0c3 0x80cf 0x40fd 0x80b1 0x606e 0x00aa Oxe0d1 OxcOee
0x60e0 0x401f Oxa07c Oxe08f 0xe098 0x0000 0x0000

G-32

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

APPENDIXBH

INTRANET TOPOLOGY UPDATE

B1H.1. General |

B11H.1.1. Scope This appendix describes a procedure for active intranet topology updatés.
The intranet is defined as all processors and CNRs within a single transmission channel.

Bi2H.1.2. Application This appendix is a mandatory part of MIL-STD-188-220. The |
information contained herein is intended for compliance.

B2.H.2. Applicable DocumentsThis section is not applicable to this appendix.

B3.H.3. Problem Overview FigureB-1H-1 shows a sample extended CNR network. Each
node labeled A through H is considered to be a radio with an associated communication
processor. The dotted ovals indicate subsets of connect|V|ty Bgﬂrlez is a I|nk dlagram of
the sample networ . :

nodes know nothlng about nelghbor nodes that are more than 1 hop away, they need to exchange
connectivity information. The topology update packet is used to exchange topology information
to build up a more complete view of the intranet's topology at every node.

H-1

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

FIGURE H-1. Sample intranet.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

FIGURE H-2. Link diagram of sample network.

B%—l%a&nmnthi 3.1. Routlanrees Each node should store topology information as a
juting tree graph. Considering the network
in Figure H-2, quure H-3 shows the routimge for nodes A and C prior to the exchange of gny
topology informationThe routing trees for A and C contain only their nearest neighbors - thpse
nodes which they can talk to directlgimilar graphs would exist for all other node€ghe-graphs
way

SA S
Jo® O D oo

FIGURE H-3. Routing tree for nodes A and C.

H-3

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

B4.H.4. Topology Updates |

H.4.1. Exchanging Routing Trees. Nodes in the network gain more topology information bt/
multicasting their individual routing trees to their nearest neighbor nodes. This exchange o
routing trees will percolate more complete topology information through the network. For
example, assume the routing trees for all nod@>ifi—Exchanging-Spanning Treesfter
node-C-broadeadtgure H-2 initially contain only nearest neighbors (nodes who are in direg
communication with the given node). If node C multic#sttopology information to all nodes
one hop awaythose which are nearest neighbpad) neighbor nodes integrate C's
spanningouting tree into their own. Node A would integrate the graph for Node C into its
spanningoutingtree as shown in Figuie-4-H-4.

~—+

e A

0
O@OND
OEORORORG

FIGURE H-4. Concatenated routing tree for node A.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

Before thespannirgoutingtree is saved, Node A prunes any successive instangesibind
subsegquentsuecessdtself. For instance, in Figurg-4-H-4, the link from A to C is the same
the link from C to A; therefore, the link from C to A is removAal.redundant identical links ari

also pruned. These are links with the order of the end points reversed.

B4.2H.4.2. Topology Tables The topology table for A is shown in Tatilel-H-1. It assumes |
no nodes are in quiet mode, all nodes can participate in relay, and all links have a cost of 1. The
actual link layer addresses for the nodes would be placed into the table in place of the symbols

A, B, C, etc. The extension bit in the address octet would always be set to 0 for topology
updates.

_ TablelBTopology Table for Node-A.
TABLE H-1. Topology table for node A.

Node Node Hops | Cost | NR Quiet
Address Predecessor
Nede Node Ancestor | Hops | Cost | NR | Quiet
Smees s
B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
B C 2 1 0 0
D C 2 1 0 0
E C 2 1 0 0
F C 2 1 0 0

There are two entries for node B indicating that there are two paths from A to B. This table
earcould be immediately copied to the respective fields of a topology update packet. The
anecestgpredecessaaddress is not included in the topology update packeiefmresneighbor
nodes because thecestepredecessas, by definition, the originator node.

B4.3-Sparse-Spannihti4.3. Sparse RoutinBrees. Exchanging fullpanning-tree
graphsouting tree tableprovides full topology information; however, the amount of data in the
spanningoutingtree gets very large, especially for fully connected nets. The number of links in
a fully connected netwith n nodes is\(n-1)/2.Although full routing trees should be stored by|a
node, exchanging these routing trees may consume too much bandwidth. A smaller copy o¢f the
full routing tree (called a sparse routing tree) should be prepared for transmission to neighpor

nodes.To reduce the number of branches indhannirgouting tree,some of thepaths to
duplicate nodes on the tree are pruaedording to following rules:

Only the shortest pathsfrom theroot node to anotherode are retained.

b. For redundant paths from a root node to a another node which are the samg length
(same number of links in the routing tree), at most 2 are retained. Some
redundancy in paths is necessary for volatile networks.

H-5

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

For the previous example;the-abeve-examplhe path from C to B and C to D would be
pruned, since there are already shorter paths from A to C and A to D. The pruning vyields t}

sDarse routlnq tree in quure H- 5 and Table Iﬁmﬂed—yreldmg%re%papse%paﬂmng%ee in

nd the san|

A.

Node ‘NeeleAnees%or

Hope | Cost MR et
Address

(2)
OO0

FIGURE H-5. Sparse routing tree for node A.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

TABLE H-2. Sparse routing tree for node A.

Node Node Hops | Cost | NR Quiet
Address Predecessor
B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
E C 2 1 0 0
F C 2 1 0 0

The finalspanningoutingtree for Node A, after all the nodes exchange their sparse

spanninrgoutingtrees, is shown in Figuie-6-and-Fable B-3.H-6 and Table H-3. Note that
figure H-6 shows more than 2 paths between nodes G and A and H and A; however, the s
routing tree table, which is the information actually transmitted, shows only two entries for
G and H. The pruning rules stated above have not been violated. They have been applie
entries in the sparse routing table. The sparse routing graph is deduced from the table. T
guite a few redundant paths can be derived from the structure of the sparse routing table.

Fodo oo ok

H-7

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

FIGURE H-6. Final routing tree for node A.

TABLE H-3. Final routing tree for node A.

Node Node Hops | Cost | NR Quiet
Address Predecessor
B A 1 1 0 0
C A 1 1 0 0
D A 1 1 0 0
E B 2 1 0 0
F B 2 1 0 0
E C 2 1 0 0
F C 2 1 0 0
E) 2 1 0 |0 |
F B 2 1 0 |o |
G E 3 1 0 0
H E 3 1 0 0
G F 3 1 0 0
H F 3 1 0 0

B4.4H.4.4. Rules For Exchanging Topology Updat&pology update packets are transmittgd
exclusively using a global multicast address.

B4.41H.4.4.1. Topology update trigger§opology updates are triggered for node | by the |
following:

a). Node | detects a failed linknd the link is to a node that is not a static
node (link quality =7)

b). Node | detects a new or recovered lanid the link is to a node that is not
a static node (link quality =7) |

C). Node | detects a change in the quality of a link - applicable only if link |
costs are used.

H-8

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

d). Node | receives a topology update from another node which modifies fts
sparsespanningouting tree. |

). Node | changes iteespense-med@uiet Modestatus and wishes to |

announce this change.

f}. Node | changes its relay capability status. |

. Node | receives a topology update request. |
B4.4.2H.4.4.2. Sending topology update messad@gtimally, topology updates should be |
concatenated with other traffic for queuing by the link layer. Topology Update Messages are

sent to the global multicast address using Type 1 Unnumbered Information Frames which are not
acknowledged. The precedence of the Topology UpeateiedWlessagds user configurable. |

B4.4.3 | ne-othertraffic-is-queved-by-the link JlayerTiheupdates should be transmitted no |
more often than once every MIN_UPDATE_PER. MIN_UPDATE_PER is measured in minutes

and is set by the network administrator when the nodes are conflgured The network
administrator can disable topology update transmission by setting MIN_UPDATE_PER to zero.
Update packets are superseded by newer packets if they have not been queued at the link layer.

Sparse
their

H.4.5. Non-relayers. Inthe Topology Update broadcast by non-relayers, the non-relayer

indicates its status by setting the NR bit to one in its entry of the Topology Update messagee.
Additionally, the non-relayer includes all one-hop, and only one-hop, neighbors (because
relaying by this node is not permittedylon-relayer nodes remain in the spassaenningouting
trees; however, they must not have any subsequent branches. Their entries in the
spanningouting table must have the NR bit set to 1. |

B4.6.H.4.6. Quiet Nodes Nodes in the quiet state may appear in the spaesingouting |
tables and in update packets with the QUIET bit set to 1; however, they must not have any
subsequent branches in tnnirgoutingtree. Nodes wishing to announce that they are
entering quiet mode must add a separate entry into the sparsengouting table and update
packets with NODE ADDRESS and NODE PREDECESSE@RESTOR set to their own |
address and the QUIET bit set to 1.

B4.7H.4.7. Topology Update Request Messag@e Topology Update Request Message is |
triggered whenever there is a mismatch between the topology update ID received from a station
and the value that had been stored previously. The Topology Update Regsssme may also
be sent whenever a data link transmissiddassage-willusdetected from a previously
unknown neighbor. The Topology Update Request message Tigpe & Unnumbered ‘
Information frame which is not acknowledged and is addressenidingto aparagraphs
5.4.1.1.7,5.4.1.1.9, and 5.4.1.3. The Topology Update Request message is addspesifitto|

H-9

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

stations at the Intranet laystationand may be sent to the global multicast address at the daJa
link layer. The precedence of the Topology Update Request Message is user-configurablel. The
Topology Update Request Message may be sent no more often than MIN_UPDATE_PER/2.
This constant allows up to two requests to be sent to a node while the node is waiting for the
MIN_UPDATE_PER timer to expire.

H-10

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

APPENDIX |

SOURCE DIRECTED RELAY

.1. General |

1.1.1 Scope This appendix describes a procedure for relaying packets across a CNR intrahet
using source directed routes. The intranet is defined as all processors and CNRs within a single
transmission channel.

1.1.2 Application This appendix is a mandatory part of MIL-STD-188-220. The informatioh
contained herein is intended for compliance.

1.2. Applicable DocumentsNone |

[.3. Problem Overview Intranet relaying is required when nodes in a intranet need to |
communicate, but are not nearest neighbors capable of hearing one another's radio transmissions.

.4. Procedure |

1.4.1 Forward Routing Source Directed Relay provides a simple non-dynamic procedure fdr
relaying a packet from an originator to one or more destinations. The source must calculate the
path through the intranet network to reach each destination. These paths are based on the
topology and connectivity table. The specific source directed route for each destination must be
encoded into the intranet header. If the routes for two or more destinations share common links
along the paths, the two paths should be merged together. As a result of this, the resulting paths
should not have any common nodes.

The address of successive relayers, destinations, and their associated status bytes are placed in
the intranet header in order of progressing througbghenirgoutingtree. Nodes which are |

one hop away and destinations only are placed into the Intranet Header first with their DES bit
setto 1. The next entries into the Intranet Header are the relay paths which may include nodes
which are relayers and destinations. Each relay path starting at the source is completed before
another relay path with its origin at the source is begun. Within the status byte for each relayer
the REL bit is set to 1 and S/D is set to 0. If the relayer is also a destination in addition to being
a relayer, the DES bit is set to 1. If there are multiple destinatiahsire not relayeifsllowing
a relayer, each of these destination addresses and their status bytes should-dgulestadiyin
the header after the relay naglguentiallyin theheadeiorder of their appearance in the path.
Within this group the extension bit within the destination/relay address filébisdestinations
oot tne oot ceote oo oo cbepopen Lo e te A oot enotused. The
last address can be determined from the Intranet header length. The last address in a grojup can
be determined from the DIS field of the Destination/Relay Status Byte defined in 5.4a&i.7.
DESbitsetto-1.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

All destinations in the relay path that are required to provide end-to-end intranet
acknowledgments have set the ACK bit in their status bytes to 1. For all destinations, the |
DISTANCE field is set to the number of hops between the originator and the ultimate

destination host for the reIaFanedesJehaPpe#en%Fela%wqd—&F&ne%des%maﬂens#eHhe glven

. 4 2 End to end Acknowleddments End -to- end Acknowleddnmretﬁ)rmed by théh final
destination nodes upon receipt of an intranet headerA@# bit set INDESTINATION

STATUS BYTE for theith destination. ThMESSAGE ID for the packet to be acknowledged
is retained. The message type is set to 1. The path between the originator nodéland the
destination is reversed. All intermediate destinations are removed. The path will contain one
originator, one destination, and the relayers. DBS bit in the status bytes for all relayers is set
to 0, indicating they perform relay only. No data is carried with an end-taamedwiedgerment|
acknowledgmenpacket; just the intranet header. |

I.5. ExamplesTo illustrate Source Directed Relay procedures consider the sample netwon’< link
diagram in Figure I-1 and finabanraingoutingtree in Figure I-2. Table I-1 gives specific
addresses for the nodes labeled A, B, C, D, E, F, G and H. To maintain consistency with other
sections of MIL-STD-188-220, the least significant bit (LSB) is presented to the left of the
figures in this appendix.

Note: Links B-F, D-E and E-H do not exist. due to
distance or physical obstruction to line-of-sight.

Figure-1—Link Diagramof a-Sample Network. |
FIGURE I-1. Link diagram of a sample network. |

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

FIGURE I-2. Final routing tree for node A.

TABLE I-1. Sample Node Addresses

Node LSB MSB Address
A X 1 1 1 1 0 0 0 15
B X 0 0 1 0 0 0 0 4
C X 1 0 1 0 0 0 0 5
D X 0 1 1 0 0 0 0 6
E X 1 1 1 0 0 0 0 7
F X 0 0 0 1 0 0 0 8
G X 1 0 0 1 0 0 0 9
H X 0 1 0 1 0 0 0 10

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

1.5.1. EXAMPLE 1. Assume that node A has a packet bound for node G alone. Node A's
SparseSpanninRouting Tree provides the following potential paths to Node G: A-B-E-G,

A-C-E-G, A-C-F-G and A-D-F-G. Assuming that all paths have the same quality and cost, any
path may be selected by Node A. In this example, path A-B-E-G is selected.

§

:
%
;
i%

LO(MmO|O|w(>

OH O |O|H|O|
H|O|O|H || O|O|H
IR O|O|O|O |

O(O|(O|O|O|O|O|O

OO(O|O|O|O|O|O

OO(O|O|O|O|O|O

X % % [* |* [x |*x |*
O|o|o|k|k|k|k|o
BoowN®wbdw

The following values are assigned to the Intranet Header in example 1:

MESSAGE TYPE = 4 (IP Packet)

TYPE_OF_SERVICE = 0000 0000

MESSAGE ID =1

MAX_HOP_COUNT = 3 (Distance from node A to node G)
ORIGINATOR ADDRESS =315 (node A)

STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 4 (node B)

STATUS BYTE 2 = 01010000 (DIS=2, REL=Yes, DES=No, ACK=No)
DESTINATION 2 = 7 (node E)

STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)

HEADER LENGTH = 12 octets

Figure I-3 shows the complete Intranet Header for example 1. Note that the LSB in all
destination addresses is 0 except for the last destination address (node G).

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 ‘ 7
LSB MSB
VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH
0 0 1 1 0 0 0 0
TYPE OF SERVICE
0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER
1 0 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 1 0 0 0 0 0 0
ORIGINATOR ADDRESS
0 1 1 01 01 0 0 0 |
DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1
0 0 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2
0 1 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 2
0 1 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 3
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 3
1 1 0 0 1 0 0 0

FIGURE I-3. Example 1 intranet header.

1.5.2. EXAMPLE 2. Assume that node A has a packet bound for nodes G and H. Node A'f
SparseSpannirg—Routing Tree provides the following potential paths to nodes G and H: A{B-

E-G, A-C-E-G, A-C-F-G, A-C-F-H, A-D-F-G, and A-D-F-H. Of these potential paths, the most
economical choices are those that use node F for relaying: A-C-F-G, A-D-F-G, A-C-F-H, and A-
D-F-H. Although paths A-B-E-G and A-C-E-G are viable paths to node G, they would unneces-
sarily increase processing at nodes B and E, and would increase the size of the Intranet Header in
this example. In this example the selected paths are A-C-F-G and A-C-F-H.

The following values are assigned to the Intranet Header in example 2:

MESSAGE TYPE = 4 (IP Packet)

TYPE_OF_SERVICE = 0000 0000

MESSAGE ID =2

MAX_HOP_COUNT = 3 (Distance from node A to nodes G and H)
ORIGINATOR ADDRESS =315 (node A)

STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 4 (node C)

STATUS BYTE 2 = 01010000 (DIS=2, REL=Yes, DES=No, ACK=No)
DESTINATION 2 = 8 (node F)

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)

STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 10 (node H)

HEADER LENGTH = 14 octets

Figure I-4 shows the complete Intranet Header for example 2. Note that the LSB in all
destination addresses is 0 except for the last destination address (node H).

0 ‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 ‘ 7
LSB MSB
VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH
0 1 1 1 0 0 0 0
TYPE OF SERVICE
0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER
0 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 1 0 0 0 0 0 0
ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0 |
DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1
0 0 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2
0 1 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 2
0 0 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 3
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 3
0 1 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 4
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 4
1 0 1 0 1 0 0 0

FIGURE I-4. Example 2 intranet header.

1.5.3. EXAMPLE 3. In the third example, node A wishes to deliver a packet to nodes D, E,|F, G
and H. In this case node A again would select the most economical path to each destination,
taking into consideration the impacts on network traffic and Intranet header size. Table I-2 lists
the potential and selected paths from node A to each of the intended destinations.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

A similar process would be used to select economical paths to relay nodes, such as node C. The
shortest path to the most distant nodes G and H are reviewed to determine whether the relay
nodes C and F are also destinations. Note that node F is both a destination and a relay while
node C is a relay node only.

Destination Node Potential Paths Selected Path
D A-D A-D
E A-B-E A-C-E
A-C-E
F A-C-F A-C-F
A-D-F
G A-B-E-G A-C-F-G
A-C-E-G
A-C-F-G
A-D-F-G
H A-C-F-H A-C-F-H
A-D-F-H

TABLE |-2. Paths used in Example 3.

The following values are assigned to the Intranet Header in example 3:

MESSAGE TYPE = 4 (IP Packet)

TYPE_OF_SERVICE = 0000 0000

MESSAGE ID =3

MAX_HOP_COUNT = 3 (Distance from node A to nodes G and H)
ORIGINATOR ADDRESS =315 (node A)

STATUS BYTE 1 = 10000010 (DIS=1, REL=No, DES=Yes, ACK=No)
DESTINATION 1 = 6 (node D)

STATUS BYTE 2 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 2 =5 (node C)

STATUS BYTE 3 = 01000010 (DIS=2, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 7 (node E)

STATUS BYTE 4 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)
DESTINATION 4 = 8 (node F)

STATUS BYTE 5 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 5 = 9 (node G)

STATUS BYTE 6 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 6 = 10 (node H)

HEADER LENGTH = 18 octets

Figure I-5 shows the complete Intranet Header for example 3. Note that the LSB in all
destination addresses is 0 except for the last destination address (node H).

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

0 ‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 ‘ 7
LSB MSB
VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH
0 1 0 0 1 0 0 0
TYPE OF SERVICE
0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER
1 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 1 0 0 0 0 0 0
ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0 |
DESTINATION/RELAY STATUS BYTE 1
1 0 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 1
0 0 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2
1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 2
0 1 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 3
0 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 3
0 1 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 4
0 1 0 1 0 0 1 0
DESTINATION/RELAY ADDRESS 4
0 0 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 5
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 5
0 1 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 6
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 6
1 0 1 0 1 0 0 0

FIGURE I-5. Example 3 intranet header created by node A (originator)

1.5.4. RELAY PROCESSINGAlthough the separate examples 1,2,3 all have diverse paths],

they would all require the same number data link information frames for delivery (one). The Ul,
[, or DIA frame would be transmitted to each destination simultaneously. Addressed
destinations would perform the required data link layer processing described in 5.3 and pass the
information field of the frame to the Intranet layer for further processing.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

The Intranet header is scanned for the node's data link layer address. When found, the previous
octet - the Destination/Relay Status byte - is inspected. If the Relay bit is not set and the
destination bit is set, the data portion following the Intranet header is passed to the next higher
protocol layer for further processing. If the Relay bit is set, Relay processing is required. If both
the Relay bit and the Destination bit are set, Relay processing is performed before the passing
data portion of the frame to the next higher protocol layer for further processing. Relay
processing involves the following steps:

+——-Scan forward until the relayer node seés ibwn address. |

2 Scan toward the end of the header looking for all nodes whose DES bit is sef and
whose distance is one hop greater than your own. Terminate the scan when a
distance less than or equal to your own or the end of the header is found. Save the
addresses.

3——While scanning forward until a hop distance less than or equal to your own ig
found, find all relay addresses that are one hop away from your address and save
these addresses.

4——Remove all duplicate saved addresses and pass the remaining addresses to| the
data link layer to form a multi-addressed information frame containing the
Intranet header and data.

The following sections discuss the relay processing at each of the downstream relayers in
Example 3. There are two options when filling out the Intranet Header Address Field at the relay
nodes. The relay nodes may copy the Address Field and place it into the relay packet intact or
they may delete the addresses which have no impact on forwarding or return of a network layer
acknowledgment. If the implementor chooses to leave the address field intact, the address field
in Figure 1-5 is used at every relayer. If the implementor chooses to compress the address field
to save transmitted bytes, the following paragraphs dictate the method for compression. There is
no interoperability problem regardless of which of these two methods are implemented.

1.5.4.1 RELAY PROCESSING AT NODE (Node C is a relay node, but not a destination |
node. Node C is responsible for relaying the information to nodes E F, G and H. Node C
assigns the following values to the Intranet Header in example 3:

MESSAGE TYPE = 4 (IP Packet)
TYPE_OF_SERVICE = 0000 0000

MESSAGE ID = 3

MAX_HOP_COUNT = 2 (Original MAX_HOP_COUNT - 1)
ORIGINATOR ADDRESS =215 (node A)

STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, Des=No, ACK=No)
DESTINATION 1 = 5 (node C)

STATUS BYTE 2 = 01000010 (DIS=2, REL=No, DES=Yes, ACK=No)
DESTINATION 2 = 7 (node E)

STATUS BYTE 3 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

DESTINATION 3 = 8 (node F)

STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 9 (node G)

STATUS BYTE 5 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 5 = 10 (node H)

HEADER LENGTH = 16 octets

Figure I-6 shows the complete Intranet Header created by Node C.

1.5.4.2. RELAY PROCESSING AT NODE MNode F is both a destination and a relayer witH
relay responsibilities to nodes G and H. Node F assigns the following values to the Intranet
Header in example 3:

MESSAGE TYPE = 4 (IP Packet)

TYPE_OF_SERVICE = 0000 0000

MESSAGE ID = 3

MAX_HOP_COUNT = 1 (Received MAX_HOP_COUNT - 1)
ORIGINATOR ADDRESS =215 (node A)

STATUS BYTE 1 = 10010000 (DIS=1, REL=Yes, DES=No, ACK=No)
DESTINATION 1 = 5 (node C)

STATUS BYTE 2 = 01010010 (DIS=2, REL=Yes, DES=Yes, ACK=No)
STATUS BYTE 2 = 8 (node F)

STATUS BYTE 3 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 3 = 9 (node G)

STATUS BYTE 4 = 11000010 (DIS=3, REL=No, DES=Yes, ACK=No)
DESTINATION 4 = 10 (node H)

HEADER LENGTH = 14 octets

Figure I-7 shows the complete Intranet Header created by Node F.

I-10

MIL-STD-188-220B: 20 January 1998

(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

‘ 1 ‘ 2 ‘ 3 4 5 ‘ 6 ‘ 7
LSB MSB
VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH
0 0 0 0 1 0 0 0
TYPE OF SERVICE
0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER
1 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
0 1 0 0 0 0 0 0
ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0
DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1
0 1 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2
0 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 2
0 1 1 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 3
0 1 0 1 0 0 1 0
DESTINATION/RELAY ADDRESS 3
0 0 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 4
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 4
0 1 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 5
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 5
1 0 1 0 1 0 0 0

FIGURE 1-6. Example 3 intranet header for node C (relay node)

I-11

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

0 ‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 ‘ 7
LSB MSB
VERSION NUMBER MESSAGE TYPE
0 0 0 0 0 0 1 0
INTRANET HEADER LENGTH
0 1 0 1 0 0 0 0
TYPE OF SERVICE
0 0 0 0 0 0 0 0
MESSAGE IDENTIFICATION NUMBER
1 1 0 0 0 0 0 0

MAX HOP COUNT SPARE
1 0 0 0 0 0 0 0
ORIGINATOR ADDRESS
0 1 1 10 10 0 0 0 |
DESTINATION/RELAY STATUS BYTE 1
1 0 0 1 0 0 0 0
DESTINATION/RELAY ADDRESS 1
0 1 0 1 0 0 0 0
DESTINATION/RELAY STATUS BYTE 2
0 1 0 1 0 0 1 0
DESTINATION/RELAY ADDRESS 2
0 0 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 3
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 3
0 1 0 0 1 0 0 0
DESTINATION/RELAY STATUS BYTE 4
1 1 0 0 0 0 1 0
DESTINATION/RELAY ADDRESS 4
1 0 1 0 1 0 0 0

FIGURE I-7. Example 3 intranet header created by node F (relay and destination node)

I-12

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

APPEN-DIX J

ROBUST COMMUNICATIONS PROTOCOL

J1-J.1. General. |

J.1.1. Scope Thisappenrdix—Appendixdescribes the interoperability and technical |
requirements for the robust communications protocol for DM#EBsystems—Fhis——
appendb—and interfacing C4l systems (DTEs). This Apperapplies only to HAVEQUICK

Il compatible systems that require interoperability with radios that do not have data buffering or
synchronization capability.

J.1.2 Application Thisappendixis-ret——Appendix isa mandatory part ahisMH=——-
STE-MIL-STD-188-220. The information contained herein is intendedgeidance—

enly—compliance.

32—J.2. Applicable DocumentsThis section is not applicable to thisperab—Appendix.

J3—J.3. Introduction This physical layer protocol provides the additional processing to aid fthe
transfer of secure and non-secure digital data when concatenated with the link processing of the
MIL-STD-188-220 protocol. The additional processing of this protocol allows for a higher level
protocol with an error correcting capability equal to rate 1/2 Golay to transfer a burst of data
containing up to 67,200 data symbols with better than 90% probability of success in a single
transmission, this being over an actiMeS-1+64HAVEQUICK |l compatiblelink with a |
random bit error rate of 0.1 or less. The second goal of this physical protocol is for the required
performance to be achieved entirely in software using current systems with modest processing
capability.

J.3.1 Physical Protocol ComponentShree individually selectable processes are used to njeet

the performance requirement. The first is the application of rate 1/3 convolutional coding to
combat high random bit error rates. The second is a provision for data scrambling. Scrambling
at the physical layer is implemented simply as the multiplication of the transmit data with a
pseudo random bit pattern. The third is a packetizing scheme that allows for the re-transmission
of the data that was lost due to/ARC-164HAVEQUICK |l compatiblefrequency hop. The |
re-transmission is performed, and data recovered within the data burst and the data interruption is
transparent to the higher level protocol. This packetizing scheme has been dubbed the Multi-
Dwell protocol because it was formulated to allow a message to be transmitted over multiple
AREC-164HAVEQUICK Il compatiblehop dwells. |

J.3.2 Optional rate 1/3 convolutional codin@he transmitting convolutional encoder |
generates three output bits for each input information bit. Figure J-1 shows an example of the
encoding process for a constraint length (K) of 3. The encoder consists of a shift register equal
in length to the constraint length. The data to encode is shifted from left to right one bit at a

J-1

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

time. After each shift, three output bits are generated using the G1, G2, and G3 polynomials.
The three encoded output bits are generated in the G1, G2, G3 order. The G2 output shall be
inverted to provide some data scrambling capability. The convolutional encoding shift register is
initialized to a state of zero when a transmission is requested. The first output bits are generated
when the shift register contains the first upper layer bit to transmit, followed by all zeros. Upon
detection of the robust synchronization pattern, the Viterbi decoder is initialized to make use of
the knowledge of the initial encoder shift register state.

G1 (101)
Input //ﬂ
SN 1
2
[/OM Output

G2 (111) (+ 3

4 /

G3(111) (+

Figure—FIGURE J-1. Convolutional encoder with inverted G2 K=3 : |

Table J-1 lists the generator polynomials used for the three specified constraint lengths. The
most significant bits of the octal representation of each polynomial are used for each polynomial.

Table-TABLE J-1. _Convolutionateding-GeneraterPolynemials——— |
{Oetal———coding generator polynomials (octal)

Constraint Length Gl G2 G3
3 5 7 7
5 52 66 76
7 554 624 764

Figure J-2 shows the relative error correcting capability of rate 1/3 convolutional coding in a
random error environment using the Viterbi decoding algorithm with hard decisions. The
performance was achieved using a trace back buffer length of 16, 32, and 64 for constraint
lengths 3, 5, and 7 respectively. If the demodulator and decoder are components of the same

J-2

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

subsystem, soft decision information from the demodulator can be used to further enhance the
performance.

RATE 1/3 VITERBI DECODE HARD DECISIONS

5 o1 o K=3
o
E B —m— K=5
@ 001 : \
i i —a— K=7
[]
NN
0001 T AY I\F\\ T
[N | [mm] (i} = [N | — [mm} [} = [|
= — — — —] = = = =
[} [} [} [} [} [} [} [}

CHANNEL BER

FIGURE J-2. Rate 1/3 convolutional coding performance
for constraint lengths 3, 5, and 7.

J.3.3 Optional data scramblindhysical layer data scrambling shall use the pseudo randon} bit
generator specified in CCITT V.33 Annex A. The shift register shall be initialized to all zeros
before the first bit of data is scrambled on transmission. On data reception, the descrambler shift
register shall be initialized to zero before the first received data bit is descrambled. Figure J-3
shows the structure of the data scrambler and descrambler.

J-3

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

A e e e

Dsx'®

D—v Qutput Data

Input Data

FIGURE J-3. Data scrambler structure.

J.3.4 Optional robust multi-dwell

J.3.4.1 Multi-dwell packet formatWhen theARS-164HAVEQUICK Il compatibleradio is in
active mode, multi-dwell packetizing shall be enabldte multi-dwell packetizing described in
this appendix assumes a physical level bit rate of 16 Hibgsformat of each multi-dwell packe

t

is shown in Figure J-4. Each packet consists of a start of packet (SOP) pattern and a segment

counter followed by 6, 11 or 13 64-bit data segments.

J.3.4.2 Multi-dwell SOP field The SOP pattern is32-e+-64-bit-long———32-bit (Figure J-S)J
f

or 64-bit (Figure J-6pattern used for multi-dwell packet detection. The maximum number
bits in error should be set to match the bit error rate environment. For normal operation, it

is

recommended that the maximum number of bits in error be 84Btfr a 64-bit pattern, and to|

3 for a 32-bit pattern. The length of the SOP pattern shall be determined toyolitisee and
four of the robust frame format.

9<7 Dsx%3
D—b Qutput Data

Input Data

J-4

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

32/64 BIT 15 TO 75 BIT SEG| SEG| SEG SEGMENT
SOP SEGMENT COUNTER N | N+1 | N+2 . + | (N+SEG_CNT-1)

BCH (15,7) | *BCH (15,7) |*BCH(15,7) |TBCH(15,7) | tBCH (15,7)
COPY 1 COPY 2 COPY 3 COPY 4 COPY 5

* - 2:3 and 3:5 Majority Voting
T - 3:5 Majority Voting Only

FIGURE J-4. Multi-dwell packet.

LSB MSB
10100100111000101111001010000110100100000111111010101
10011011101

Figure—FIGURE J-5. Multi-dwell 64-bit SOP pattern

LSB MSB
00000011100100001001001110101110

Figare—FIGURE J-6. Multi-dwell 32-bit SOP pattern : |

J.3.4.3 Multi-dwell segment count fieldThe segment counter is a modulo 64 count of the first
segment in the packet. The six required bits shall be encoded as 1, 3, or 5 BCH (15,7)
codewords depending on bits 2, 3 and 4 of the robust frame format. The six-bit segment counter
shall occupy the 6 least significant bits of the seven-bit BCH data field. The most significant bit
of the data fieldcan-optienally——shallbe used as an end of frame flag which, when set, |
indicates that data transmission is complete. A multi-dwell packet marked with an end of frame
flag shall contain only the SOP pattern and the segment count field used to make the segment
number of the last non-fill data segment transmitted.

J.3.4.4 Multi-dwell data segment&ach multi-dwell packet shall contain®l or 3713 |
consecutive 64-bit data segments. Unless a channel interruption is detected during the
transmission of the packet, each data segment shall contain the next 64 bits supplied by the data
link layer for transmission. The last multi-dwell packet shall contain pad bits and segments as
necessary to complete the packet. The transmitted pad data shall be an alternating one, zero
sequence.

J-5

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

J.3.4.5 _Multi-dwell hop detectionThe physical layer shall have the means of detecting or |
predicting communications link outages.

J.3.4.6 _Multi-dwell transmit processingdata received from the data link layer for transmissipn
shall be broken into 64 bit segments for transmission. The data shall be packetized as stated in
J.3.4.1. Packets shall be transmitted consecutively with the packet count subfield containihg the
count, modulo 64, of the first segment in the packet until a communications link outage is
detected, at which time, the remainder of the data segments in the currently transmitted packet
shall be filled with an alternating one/zero pattern. If the configurable hop recovery time (HRT),
is greater than the time remaining to complete the transmission of the current packet, the
alternating one/zero sequence shall be extended to the end of the HRT period. If a hop is
detected during the multi-dwell packet synchronization field, or during the transmission of the
first two segments, the entire packet shall be retransmitted. The first multi-dwell packet
transmitted in a frame shall not contain the multi-dwell synchronization field. It is assumed that
the segment count of the first packet is zero.

J.3.4.6.1 _Hop data recovery time periodl configurable variable called the hop recovery timg
(HRT) shall be used to determine if the fill data transmitted following a hop must be extended to
ensure that the following multi-dwell synchronization field can be received. The HRT is defined
as the time period from the beginning of the transmitting radio frequency synthesizer frequency
hop to the time that the bit synchronizer connected to the receiving radio can reliably demodulate
data. Because different hop detection/ prediction methods flag the hop at different times relative
to the beginning of the transmitting radio frequency synthesizer frequency slew, the configured
HRT shall be internally adjusted to insure that diffelRFDHTEsin a network can all use the
same configurable HRT.

J.3.4.6.2 Data transmitted after a hdphe multi-dwell packet transmitted directly following a |
communications link outage shall retransmit data starting with the 64-bit segment preceding the
segment that was being transmitted when the hop was detected.

J.3.4.6.3 _Termination of transmissiofter the final packet of the frame is transmitted, withgut

a hop detected during a data segment containing actual data (not fill data), data transmission shall
be terminated. To prevent receive delays caused by the receiver not being able to determine that
the last data segment has been received, an optional truncated multi-dweltpacket| be |

sent with the end of frame flag set. The segment count associated with the end of frame flag

shall mark theast—first non-fill data segment transmitted. |

J.3.4.7 Multi-dwell receive processindf the multi-dwell flag was set in the robust |
synchronization field, the receiver shall buffer the multi-dwell data packet. The segment count
for the first multi-dwell packet in a frame shall be assumed to be 0. After the last packet bit is
received, the receiver shall open the SOP correlator window. When the SOP pattern is
recognized, the segment count is decoded using the combination of majority and BCH decoding
specified in the robust synchronization field. After each new segment count is decoded, the
buffered data for data segments lower in count than the new segment count are passed on to the
next higher layer as received bits. The segments of the newly received packet are then buffered
and held until it is verified that the buffered segments will not be re-transmitted.

J-6

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

J.3.4.7.1 Receive end of frame detectidfhe data remaining in the multi-dwell receive data |
buffer shall be provided to the higher level protocol when an end of frame condition is detected.
The end of frame condition may be determined by the data demodulator, the optional multi-dwell
end of frame flag, or by a message from the higher level protocol indicating that message
reception is complete.

J.3.4.7.2 _Optional soft decision informatioVhen there is a very high link BER, a SOP pattgrn
may not be recognized or the segment count may not be correctable. If fewer than three
consecutive segment counts cannot be corrected the correct number of bits shall be supplied to
the upper level protocol as to not cause a bit slip, and consequently, the loss of the remaining
data in the frame. If convolutional coding is used with multi-dwell, it is suggested that soft
decision information is supplied indicating the low quality of the received data resulting from a
missed SOP pattern or an unrecoverable segment count.

J.3.4.8 Multi-dwell majority logic overhead choic&he choice of the amount of multi-dwell |
majority voting (MV) overhead is dependent on the expected link BER. Table J-2 gives an
estimate of the maximum random BER supported for a 90% probability of passing a single frame
of length 1536 bits, 7680 bits, and 67,200 bits with no errors introduced due to multi-dwell
processing.

Fable—TABLE J-2. MaximuntSuppetted—supportedBER.

Segment Count MV 1536 7680 67,200
1loutofl 0.055 0.03 0.016
2 out of 3 0.14 0.11 0.07
3outof5 0.2 0.14 0.12

J.3.4.9 Multi-dwell overhead The multi-dwell protocol introduces an overhead that shall be|
considered in the network timing calculations. The overhead is a function of the radio hop rate,
the multi-dwell segment count majority voting choice, and the message length. Table J-3 gives
the equation to calculate the actual worst case realized data rate for each hop rate and majority
logic combination. The numbers in table J-3 were run with a hop recovery time of 15.625 ms, a
maximum radio timing drift over a 1/2 hour period, an instantaneous data rate of 16000
bits/second. The actual efficiency will depend upon the exact implementation, therefore the
numbers in Table J-3 should be used as a guide only. The six-segment multi-dwell packet shall
be used for protocol acknowledgments and other single TDC block messages. The calculated
realized data rate shall be used for the bit rate of all data encapsulated by the multi-dwell
protocol.

Fable—TABLE J-3. Multi-dwell overhead

J-7

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

HOP Multi-dwell overhead calculation

RATE MV 11 11 segments | MV 2:3 1lsegments | MV3:513segments | MV 3:5 6segmetd

RATE MV 1:1, 11 segments | MV 2:3, 13 segments | MV 3:5, 13 segments MV 3:5, 6 segments
0 R/((0.3*107-°%%)+1.06) | R/((0.3*16%"°°%)+1.16) | R/((0.2*16%°°%%)+1.17) | R/((0.1*16-°°%)+1.36)
1 R/((0.6*107-°%%)+1.10) | R/((0.6*16-"°°%)+1.21) | R/((.55*16%"°°%)+1.23) | R/((0.3*16°°%)+1.40)
2 R/((0.5*1070%%)+1.15) | R/((0.5*16%"°°%)+1.27) | R/((0.7*16%-°°°%%)+1.30) | R/((0.4*16°%)+1.48)
3 R/((0.5*1070%%)+1.20) | R/((0.4*16-"°%?)+1.36) | R/((0.8*16%-9°%%)+1.29) | R/((0.2*16°°%)+1.56)
4 R/(1.45) R/(1.51) R/((0.7*1070°9%2)+1 46) | R/((.07*160%%?)+1 85)

ALL R/(1.72) R/(1.72) R/(1.96) R/(2.27)

R = the instantaneous data rate

L = the number of bits to be transmitted

J.3.4.9.1 Terminals lacking hop detectiohhe ALL case in Table J-3 is to show the efﬁciencil

of the multi-dwell protocol in systems where the hop cannot be detected due to hardware or
software limitations. Since there is no hop timing information availabl&#EIDTE shall |
assume that the radio will hop at every possible time slot. In these systems, it is assumed that
timing synchronization with the radio will be made by the detection of the falling edge of the
radio delayed push to talk (DPTT) signal provided byAR&-164HAVEQUICK Il compatible |
radio.

J.3.5 Robust Communications Protocol Network TimiAithe use of the robust communicati041s
protocol requiresie— modificationto someof the Appendix C type 1 network timing equations.

The bit rate, transmit delays, and receive processing delays are modified by the robust protocol.
For purposes of robust network timjrigio system bit rates are defined. The first is the chanhel
bit rate which is represented as Mhe second is the data link bit rate which is represented as n
As an example, if rate 1/3 convolutional coding is applied at the physical layer and the channel
bit rate is 16<az—kbps,the link bit rate would be 5.38&z—kbps. In this example, an external|
cryptographic device would transmit the Ml field atHz and an internal cryptographic device
would transmit the Ml field at;iHz. The multi-dwell reduction ofj s not deterministic but is
bounded. The average multi-dwellisia function of the multi-dwell packet format, the timing

of the BMHDTE transmit request in relation to the radio TRANSEC timing, and the number| of
bits to be transmitted. The followingpragraphs—Type 1 network access control
subfunctions are specified in Appendix C:

network busy sensing

response hold delay (RHD)

timeout period (TP)

J-8

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

network access delay (NAD) ‘

addressthe—The following subparagraphs addreequired modifications tee—+Fype1+—
network timing equationassociated with these subfunctions as a result of using the robust
communications protocol |

J3.51— Net busy sensing-function———J.3.5.1 Net busy sensingBecause net busy |
sensing is performed at the physical level, there are no modifications to the net busy sensing
timing or methods when using the robust communications protocol.

J.3.5.2 Response hold delayhe additional transmission time required for the robust

synchronization field and, bit rate reductionsdd-rew-termste——impact the response

J-9

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

transmission time parameter, (S), containeth@response hold delay timieguatiers——

equation, RHIQ. Also additional receive processing delays impact the intedddiB-timing—
ealewlatiers——DTE timing calculations. The RH[s calculated as follows:

RHDo = EPRE + PHASING + S + ELAG + TURN + TOL

robustprotecel——

33-5:2.3—J.3.5.2.1 Response transmission time.(Bhe response transmission time is chang
by the robust protocol. Ape-trespense——Type 1 ResponseDU from the data link layer
consists of thé4-bit—64-bit message synchronization fieleythe 75-bit robust frame format,
an optlonal embedded COMSEC MI fleld the 168-bit word count and Transmigstional—

he&deieHeaderTDC block and 384&.—69—168 or 80 bits of acknowledgment data depending
on the selectable use of EDC and TDC. Fherefthese—64-bit message synchronization

jed

field and the 75-bit robust frame format are transmitted at the channel bitJakegmemaining
components are transmitted at the link data rate (n

J.3.5.2.1.1 Multi-dwell Response. Where multi-dwell is used to send the original message
channel bit rate,dnof 16 Kbps, all responses, i.e. Type 1 acknowledgmeéntaf——

ata

respens—e-transmission-cases;,——— except for a secure external crypt@nsmission,
transmission-with-rate H3-convolutioncodingenabledthe ——M

J-10

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

respoense-tis—areshort enough that a multi-dwell transmission is not required. A multi- dWF”

transmission is required when using an external ceyptavith-the-selectiorof————

rate-1/3-convelutional-coding————— because the data may be interrupted by a frequengcy

hop. Table J-4 gives the maximum number of bits that will be transmitted at the channel bit
(ne) for the link data sizes and multi-dwell SOP majority logic choices. These numbers are

rate
for

the HOP ALL case, which is the worst case, and for the highest operational hop rate, hop rate 3.
The 139 robust protocol header bits are included in Table J-4. The numbers in Table J-4 do not
include the “wasted time” shown in Figure J-7.

TFable—TABLE J-4. Multi-dwellexternal crypto response transmission time
HRT=15.6 ms, mode 3, (MV3:5, 6 segments/packet)

T e R R e ot —
FEC 1/3 FEC 1/3 No EC No FEC
LINK Hop Rate 3 Hop All Hop Rate 3 Hop All
BITS
312 2139/n 3139/n 662/n. 662/n.
392 2139/n 4143/n 1185/n 1185/n
616 3139/n 5189/n 1185/n 1708/n
Fdwollox I === === ; e
HRIF=15-6-ms6-segmentsipacket——
e —— e —— e e—
HOPRATE | HOPALL | HORPRATE| HOPALL | HORPRATE| HORPALL
3 3 3
a2 | 2edge 204 e | 20D 2E04lp— o0l =2l
=02 | 2edgle— 2ALOp— | DD 2E04lp— ol dddz2le—
ELe | 28dsl SALSlp— | 22000 4E02 =2l E400 s

NOTES: Table J-4 is optimized for the AN/ARKG4.
Robust Mode 3 is used for response PDUs. The choices are FEC or no FH
LINK BITS = the number of bits sent to the physical layer in a response PD
If Delay PTT is not supported by all radios in the network, then only column
marked "Hop All" apply.
Columns marked "Hop All" are required. Columns marked "Hope Rate 3"

optional.

J.3.5.2.1.2 Non Multi-dwell Response. Where an external crypto device is not usedsall 1

U.

are

Kbps, the long dwell time will contain the entire response. Where an external crypto devic

J-11

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

used, convolutional encoding is not used and ¢he 16 Kbps, the crypto preamble will be
contained within the long dwell time and the response will be contained within the first
minimum dwell period following the long dwell time. |

J3-5-2.6—]J.3.5.2.2 Response transmission examggure J-7 shows an example of the |
timing of an acknowledgment when an external cryptographic device is used with the

HAVEQUICK Il radio Fhekeytime-delay-is-shownasth——e-periodbetween——

the-assertien-of-the BMIBtransmitrequestand-theradtie PPHH—
sighal—— The falling edge of the DPTT signal marks the beginning of a long hop dwell that is
long enough to contain the crypto preamble time.

If an external crypto device was not used, this long dwell time would contain the entire
acknowledgment. After the crypto has finished transmitting the Ml field, the transmitting

BDMHDTE begins to supply data for transmissigepending-en-thelength-ofFthe————
COMSEChitsyncfieldthere ma—y-be timetotransmitthe ——

acknowledgmentoratleasttherobustsynechronizationfieldon————————————————
theleng-dwell——— Typically, the COMSEC bit synchronization time is not very accurate
and may be long enough to push the Ml field to the end of the guaranteed long dwell time. For
this reason, thBMFB-typicaty-waits———DTE shall waitto start data transmission on the

first hop dwell following the long guaranteed dwell. The end of the guaranteed hop dwell is
marked by the possible hop label. The first bit of the robust SOM pattern is transmitted after the
configured hop recovery time (HRT). During the transmission of the response, one or more hops
may occur which will vary the transmission time of the acknowledgment. When the response
transmission is complete, tB8TDTE de-asserts the transmit request signal. The radio wil|

de- assert DPTT after a variable delay (&t a time synchronized with the hop sequence.

After DPTT is de-asserted, teeypto-transmitsthepoestamble se-thatahep—————
wil-ret-eeeurdurirg——radio RF output remains active and a radio hop will not occur.

This allows forthe transmission of theypto postamble. The radio RF output remains active for
longerthat—thanis required for the transmission of the crypto postamithéch is shown as the
ET, time periodin Figure J-7. For HAVEQUICK Il radios, ETcrypto postamble PLUS BT
equals the transmitter turnaround time, (TTURN 5 EET)), as defined in Appendix.C

J-12

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

DMTD TRANSMIT

REQUEST j j
RADIO DPTT ‘ ‘
SIGNAL ‘ j j
CHANNEL ‘ FENCRYP]
TRANSMIT DATA
ONES CTIVE
POSSIBLE

FREQUENCY HOR

CRYPTO TO DMTD, ‘ ‘ .
TRANSMIT CLOCK . ‘ | ctockactve | [

DMTD TRANSMIT

DATA ' ' FILL DATA ACKNOV\Q}ETKGEMENT '
ACTUAL ‘ C ‘ w
KEYTIME WAISTED } .
DELAY « C " TIME . !
' CRYPTO PREAMBLE TIME o ET, ET,
/‘ . .
HOP SYNCHRONIZATION POSSIBL
TIMING REFERENCE HOP CHANNEL HOP ET, + ET, ADDITIONAL HAVEQUICK
RECOVERY TIME TURN ARROUND TIME

~-NOTE: TIME PERIODS
ARE NOT TO SCALE

Figure—FIGURE J-7. HAVEQUICK I
Fra-nsmission——external crypto acknowledgment transmission

33-5:274—J.3.5.2.3 Estimation of multi-dwell nFigure J-8 shows an example of thelata
rate for a multi-dwell transmission with a channel data rate &bi6—kbps. This is the worst
case data rate reduction which would be experienced with rate 1/3 convolutional coding, a 64 bit
SOP pattern length, and 3 out of 5 majority logic decoding of the segment count field. The data
rate shown Figure J-8 is the number of link bits to transmit divided by the number of channel bits
transmitted times the.n Since rate 1/3 convolutional encoding is used in this example, the
maximum link data rate achievable would be 5B3—kbps. For short messages, the radio hgp
timing at the beginning of the transmission has a significant impact on the transmission
efficiency. This example uses 13 segments per packet which is the recommended segment per
packet count for long transmissions using 3 out of 5 majority logic. This figure and the

J-13 |

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

equations given in Table J-3 are given as an aid for network throughput estimation and should
not be used for network timing. The bit rate estimating equation used in Figure J-3 is:

link rate = nc / (0.5*1g"k Pts*:00003) 1. 1 3071)

Data Link to Physical Layer bit rate 3/5 MV, Multi-Dwell hop rate 3, with
rate 1/3 convolutional coding. The equation is 0.5 * 10(-L*.00003)+ 1.301

4600

4400

4200 -

4000 - —— max rate

—m— avgrate
3800 -

—&— min rate
—X— equation

link bit rate

3600 -

3400

3200

3000 -
0 50 100 150 200

Link Message Size in 384 bit (TDC blocks)

Figure—FIGURE J-8. Link Data Rate as a Function of Message. Size |

33-5-2:8—J.3.5.2.4Receive Processing Delayk order to calculate the reference point for jhe
RHD and TP timers, the receivilg4HDTE must know the time of arrival of the last bit of th
transmission. In order to do this, the data link layer normally determines the last bit of the
transmission after decoding the word count and tags the arrival of the last data bit from the
physical layer. The physical layer receive delays are dependent BWMEHBTE hardware and |
software implementation. The two delay components are processing delays and data pipeline
delays. The processing delays are independent of the received data rate and the pipeline delays
are dependent on the data rate. If the receive data rate is known, the data link layer can calculate
the time of arrival of the last bit of the message by subtracting off the processing and pipeline
delays. If the received data rate is not known, it is impossible to convert a pipeline delay from

bits to seconds. The data rate of all non-multi-dwell transmissions is known to be gather n

nJ/3 dependent on the use of rate 1/3 convolutional coding. The received data rate of a multi-
dwell transmission is not known. ¥ this reason, when a multi-dwell transmission is |
received, the physical layer must tag the time of arrival of the final multi-dwell bit. The physical
layer can determine the time of arrival of the last bit by using the end of frame flag which is the
most significant bit in the final multi-dwell segment count fiefdlogical signal from the |
physical layer to the data link layer indicating the message completion time is required to ilgsure

that the transmitter and receiver(s) use the same reference point for the calculation of RHIP and
TP. |

J-14 |

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

The trace back buffer length of the Viterbi decoder introduces a known pipeline delay in the
received data. The length of the trace back buffer is an implementation choice which is
dependent on the Viterbi decoder architectBipeline delay is the time needed to flush the trace
back buffer. |

J.3.5.3 Timeout period (TP)The timeout period isempesed-ef-termsthathave——
already-been-defined————derived from the following equations as described in Appendi
C:

TP = (j X RD Maximum(DTEACK, TURN)
TP = Maximum(DTEPROC, TURN)
TP =(15 x R§B TOL + TURN

Modifications to the timeout period are result of changes to Ratid DTE receive processing
delays, which have been addressed in paragraphs J.3.5.2 and its subparagraphs.

J.3.5.4 Network access delay (NADJhere are no modifications to the network timing
equations associated network access delde network access delay is always an integer

number times the Net_Busy_ Detect_Timaeich-hasprevioushy-beenr———
defired—which, as previously discussed, has not been modified.

J.3.6 Application guidance for the HAVEQUICK Il link.

J.3.6.1 Frequency Hop Synchronization. The HAVEQUICK Il TRANSEC timing and the OTE
network timing are not synchronized. To avoid the loss of critical data, such as the
cryptographic synchronization and/or the protocol SOM patterns, the DTE transmission timing
must be synchronized to the frequency hops. The radio should provide a DPTT signal which

marks the beginning of a hop dwell with a guaranteed minimum duration. This minimum dwell
period is sufficient to carry the synchronization field of an external cryptographic device or the
robust frame synchronization field when an internal cryptographic device is used.

33-6—J.3.7 Summary The physical layer robust protocol introduces additional transmit and
receive delays due to the robust header and the convolutional decoding pipeline delays. Multi-
dwell packetizing introduces a data rate reduction which varies widely for short transmissions.
The HAVEQUICK Il radio introduces variable delays in the keytime delay and the equipment
turn-around time. To maintain network timing using the type 1 timing equations, the net busy
sense timing and the response transmission time must be a known constant. In most cases, the
response can be transmitted without using the multi-dwell packetizing algorithm. When the
multi-dwel—dwell packetizing algorithm must be used to transmit a response, the worst case
time to complete the transmission is used in the response transmission time component of the
termETURN in RHD. The message transmission time is variable and is only required to b¢
known at the end of the transmission. Two additional physical to data link signals are required to
mark the time of the last transmitted bit for transmission, and the time of the last received bit for
a reception.

J-15

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

APPENDIX K

BOSE - CHAUDHARI - HOCQUENGHEM (15, 7) CODING ALGORITHM

K.1. General |

K.1.1 Scope This appendix describes a linear block cyclic code capable of correcting any |
combination of two or fewer errors in a block of 15 bits.

K.1.2 Application This appendix is a conditionally mandatory part of MIL- STD 188-220. I
mandatory for implementingebt .
{deseribed-in-5-2-1-2-1he Robust Communlcatlons Protocol descrlbed in Appendlx J. |

K.2. Applicable documentsThis section is not applicable to this appendix. |

K.3. BCH (15.7) code The BCH (15,7) code is a linear, block, cyclic, BCH code capable of
correcting any combination of two or fewer errors in a block of 15 bits. The generator
polynomial for this code is

g)=1+X+X®+ X + X8
where g(x) is a factor of X + 1

K.3.1 Hardware encodingBCH (15, 7) encoding can be performed with an 8 stage feedbagk
shift register with feedback connections selected according to the coefficients of g(x). A shift
register corresponding to the coefficients of g(x) is shown in Figure K-1.

| L

FigureFIGURE K-1. Shift register encoder for the BCH (15, 7) code |

Figure K-2 illustrates its operation by showing the encoding of the information vector (1000010)
to form the code vector (10100101 | 01000010), where the parity check sequence is shown
before the partition and the information sequence after. The information sequence with eight
zeros after it (place holders for the parity bits to be calculated) is shifted into the register initially
(it is really a fifteen bit shift register but only the last eight positions correspond to the
coefficients of g(x) and contain feedback connections). The operation of the shift register

K-1

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

consists of seven rounds of shift, feedback, and sum operations. The parity portion of the code
vector can then be read out of the shift register as shown.

0000000 o f5(1fofooo]1]0
Shift 000000 0 010O0O0CO0 1 0
Feedback 0 0 00
Sum 000000 0 01 0O0O0O0 1
Shift 00000 0 0010O0O0OO 1
Feedback 1 1 1 1
Sum 00000 10 11011
Shift 0000 0 0110 1 1
Feedback 1 1 1 1
Sum 0000 110 0110
Shift 000 0 1 00 1 1 0
Feedback 0 0 0 0
Sum 000 0 100011
Shift 00 00110 0 1 1
Feedback 1 1 1 1
Sum 00 1011000 1
Shift 0 o1011101 0
Feedback 0 0 0 0
Sum 0 010 110 1
Shift 00101110 1
Feedback 1 1 1 1
Sum 101 00101

FIGURE K-2. Encoding example.

K.3.2 Hardware/Software Decodingecause of its special structure (it is completely |
orthogonalizable in one step), the BCH (15,7) code can be decoded very efficiently with a
majority logic scheme which can be directly implemented in software or hardware. It is most
easily described in terms of the shift register implementation shown in Figure K-3. With gate 2
open and gate 1 closed, the received block is read into the shift register. the output of the four
modulo 2 summers is sampled by the majority gate and processed as follows: if a clear majority
of the inputs are ones (three or more) then the output is one, otherwise (if two or fewer inputs are
ones) the output is zero. This output is used to correct the last bit of the shift register. The

K-2 |

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

corrected bit is output to the receiver and feedback through gate 2 as the register is right shifted.
Fhe process is now repeated thirteen times until the last bit is corrected. |

GATE 2

GATE 1 "

A1 @ —T.

4 INPUT MAJORITY GATE

A1l 3 11 12 14
A2 1 5 13 14
A3 0 2 6 14
A4 7 8 10 14

FIGURE K-3. BCH (15, 7) majority logic decoding.

K.3.3 Software encodingThe BCH (15,7) code is most efficiently encoded in systematic fofm
from the generator matrix shown in Figure K-4.

MIL-STD-188-220B: 20 January 1998
(Showing Redline Changes from MIL-STD-188-220A, 27 July 1995)

1 0 0 0o 1 o 1 1 1 0 0 O O O ¢
11 0 o0 1 1 1 o0 O 1 0 O O o0 O
o 1 1 0o o0 1 1 1 O 0 1 0 O o0 O
1 0 1 1 1 0 o0 o O 0 O 1 o0 o0 O
o 1 o 1 1 1 0 O O 0 0O O 1 o0 O
o o 1 o0 1 1 1 o0 O 0 0O O O 1 o
o o o 1 o0 1 1 1 O 0 0O o o o 1
Parity Identity

FigureFIGURE K-4. BCH (15, 7) generator matrix

K-4

MIL-STD-188-220B: 20 January 1998

CONCLUDING MATERIAL

Custodians: Preparing Activity:

Army - CR DISA - DC
Navy - EC
Air Force - 90

Review activities: Agent:

Army - AM, SC, PT N/A

Navy - MC, NC, TD

Air Force - 02, 13, 17, 19, (Project TCSS - 2200)
29, 89, 90, 93

DLA - DH

NSA - NS

ECAC - --

DMA - MP

DOT - OST

DIA - DIA

User Activities: International Interest:

Army - AC, MI NATO
Navy - OM
Air Force - 11, 18

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1,2, 3, and 8. In block 1, both the document number and
revision letter should be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.

3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of
requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive
any portion of the referenced document(s) or to amend contractual requirements.

DOCUMENT NUMBER DOCUMENT DATE (YYMMDD)

| RECOMMEND A CHANGE:

MIL-STD-188-220AB 956727980120

3. DOCUMENT TITLE

Interoperability Standard for Digital Message Transfer Device Subsystems

4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.)

5. REASON FOR RECOMMENDATION

6. SUBMITTER

a. NAME (Last, First, Middle Initial) b. ORGANIZATION

c. ADDRESS (Include Zip Code) d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (YYMMDD)

(1) Commercial
(2) DSN
(If applicable)

& PREPARNGACTVTY DEFENSE INFORMATION SYSTEMS AGENCY (DISA)

a—a. NAME F e H MR GERALD RING bb. TELEPHONE (Include Area Code)

(1) Commercial 732-427-6893 (2) DSN 987-6893

¢ ADDRESS (nclude 2p Code) IF YOU DO NOT RECEIVE A REPLY WITHIN 45
birector- HEO DAYS, CONTACT:

DIR, JOINT INTEROPERABILITY ENGINEERING Defense Quality and Standardization Office
Atth—3EBBFBUILDING 283 5203 Leesburg Pike, Suite 1403,

ATTN: JIEO-JEBB (G. Ring) Falls Church, VA 22041-3466

FT. MONMOUTH, NJ 07703-56%3 Telephone (703) 756-2340 DSN 289-2340

DD Form 1426, OCT 89 Previous editions are obsolete. 198-290

